THE IMPACT OF MACROECONOMICS FACTOR, CAPITAL STRUCTURE AND LIQUIDITY ON THE FOREIGN BANK'S PERFORMANCE IN INDONESIA

Muhammad Akbar, Universitas Padjadjaran Dian Masyita, Universitas Padjadjaran Erie Febrian, Universitas Padjadjaran Herry Achmad Buchory, Universitas Padjadjaran

ABSTRACT

Throughout the eleven months of 2015, the net profit of foreign bank groups in Indonesia declined by 30.16% compared to the same period in 2014. Based on monthly financial report data of February 2017, totally foreign banks posted net profit of IDR 1.51 trillion or an increase of 1.95% from the same period in 2016. However, net interest income fell 0.32% to IDR 2.96 trillion. In terms of capital structure, foreign banks generally have a strong capital structure that is well above the national average of 22.91% per position in December 2016. While the NPL level of some Foreign Banks in 2007-2008 increased sharply. The low corporate value is indicated by the low financial performance measured by one of the financial ratios of Return on Assets (ROA). This condition, allegedly due to the bank liquidity. Based on this background, this study aims to examine the effect of macroeconomic, capital structure and liquidity on bank performance.

This study uses quantitative method approach to achieve the objectives and answer the research questions and test the hypothesis that has been developed. This study also uses dynamic data panel analysis based on the model of panel data frame.

The type of data used is secondary data, i.e. data/information of foreign banks listed on Financial Service Authority (OJK) period 2007-2016, sourced from OJK. Meanwhile, the data collected is bank liquidity and performance. The unit of analysis is restricted to foreign Bank who listed on Financial Service Authority. The population in this study is foreign banks listed on 2007-2016 period, as many as 10 banks (cross-section), where the periodization of financial statements is determined for 10 years i.e. 2007-2016 (time series), among others to meet the requirements of data analysis and to represent the population taken. The performance of foreign banks is measured by CAR (Capital Adequacy Ratio), ROA (Return on Asset), ROE (Return on Equity) and NIM (Net Interest Margin).

The results show that simultaneously there is significant effect from macroeconomic factor, capital structure and liquidity on the performance of foreign bank in Indonesia. Partially; BIRATE, Interbank Overnight (O/N) rate, DTA, DTE, DPKTE and LP which have a significant effect on CAR; BIRATE, Exchange Rate, DTE, DPKTE and LP which have a significant effect on ROA; BIRATE, Exchange Rate, Interbank Overnight (O/N) rate, DTA and LP which have a significant effect on ROE; BIRATE, Exchange Rate, Interbank Overnight (O/N) rate, DTA and LP which have a significant effect on ROE.

Keywords: Macroeconomics Factor, Capital Structure, Liquidity, Performance of Foreign Banks, CAR, ROA, ROE, NIM.

INTRODUCTION

Research Background

Foreign banks group in Indonesia were under pressure throughout 2015 as their larger loan portion were distributed to corporations rather than to the retail segment. In fact, corporations are less expansive throughout the year due to the economic slowdown and the weakening of commodity prices. The bank's net profit slumped for the first time since 2012 which continued to record positive growth. Based on statistics from the Indonesian Financial Services Authority, throughout the eleven months of 2015, the net profit of foreign bank group in Indonesia slumped by 30.16% compared to the same period in 2014.

The business model of the branches of foreign bank group in principle consists of two major parts of the investment banking business and the conventional banking business. Investment banking business such as JP Morgan Chase Bank. While conventional banking business such as Citibank NA, Bank of Tokyo Mitsubishi UFJ Ltd., etc. Bank of Tokyo Mitsubishi UFJ Ltd. posted the highest profit growth of 262.39% to IDR 395 billion as of February 2017 and the largest loss was recorded by JP Morgan Chase Bank with a net loss of IDR 2.7 billion. Based on the intermediary function, Bank of Tokyo Mitsubishi UFJ Ltd became the largest credit provider, amounting to IDR 90.98 trillion, followed by HSBC for IDR 46.5 trillion and Citibank NA IDR 38.14 trillion. Based on monthly financial report data of February 2017, total foreign banks posted net profit of IDR 1.51 trillion, up 1.95% from the same period in 2016. However, net interest income fell 0.32% to IDR 2.96 trillion.

Viewed from capital structure, foreign banks generally have strong capital structure which is well above the national banking average of 22.91% per position in December 2016, only Standard Chartered Bank has a minimal CAR compared to other Foreign Banks. The low value of the company is allegedly due to the company's less financial performance in the last five years. This is indicated by the low financial performance measured by one of the financial ratios of Return on Assets (ROA). There are foreign banks whose performance tends to decline and even lose. But in general the financial performance of the company tends to be stable. Foreign banks tend to be conservative in conducted the improvement of strategies.

The condition above allegedly caused due to the aspect of liquidity. Commercial banks are one financial institution that has a vital role in the nation's economy, especially for countries which its economy is still very dependent on the presence of banks as a source of financing of its economic activities. In the macroeconomic order, the bank is a transmission belt that transmits monetary policy, while in micro-economic order, banks are a source of financing for both business and individual (Koch & Mac Donald, 2000). So that the role of banks in the fulfillment of liquidity for business and individuals is vital as well make banks very vulnerable to liquidity risk.

Refer to Diamond & Dybvig (1983); Rauch et al. (2008), one of the main reasons why banks are particularly vulnerable to liquidity risk is their role in transforming maturities and providing guarantees in order to meet the liquidity needs of their depositors. This resulted in bank liquidity being suddenly depleted and the difficulties of liquidity in a bank may spread to other banks, resulting a systemic risk as described above and there are only a few studies devoted to analyzing one of the major factors to make bank as a secure and trustworthy institution when there is an economic shock.

Based on this background, it is interesting to examine the effect of macroeconomics factor, capital structure and liquidity on the performance of foreign banks in Indonesia.

Research Objective

The objective of this study is to examine the effect of macroeconomics factor, capital structure and liquidity on the performance of foreign bank in Indonesia.

LITERATURE STUDIES

Liquidity

Liquidity can be defined as the ability of financial institutions to fulfill all their obligations related to the demand for funds (Yeager & Seitz, 1989; Gitman, 2009). This opinion is also in line with the definition of liquidity proposed by Sauer (2007); Williamson (2008); Bank for International Settlements (2008); Moore (2009), namely the ability of banks to fund the increase in assets and meet the obligations that have matured without experiencing an unacceptable loss. For that bank needs to keep the liquid assets to meet the obligations of its customers or tend to be precautionary (precautionary). If the bank does not have sources of funds in meeting its customers' demand, the bank must borrow to the interbank money market or central bank.

Refer to Farag, Harland & Nixon (2013), the source of bank liquidity consists of cash or assets that can be converted into cash within a short time at a reasonable cost. A slightly different opinion is expressed by Myers & Rajan (1998) where liquidity is described as the ease of converting assets into other assets through trade. So that liquidity can also be interpreted as a convenience in converting assets into money used in the trading process.

Based on those definition, the liquidity used in this study is in accordance with the definition from Bank for International Settlements (BIS), namely as the ability of banks to fund the increase in assets and meet its obligations without causing harm. Because the definition proposed by BIS has become the reference of the banking in the world and also very comprehensive and includes various definitions that have been put forward by previous researchers. In this research, liquidity is measured by the dimension of loan to deposit ratio.

Foreign Bank Performance

According to Owolabi, Obiakor & Okwu (2011); Vodova (2011), the bank's performance is associated with profitability as measured by the amount of revenue generated by a firm that exceeds the relevant costs associated with generating that income. Lartey, Antwi & Boadi (2013) define profitability as the ability of banks in generating revenue far greater than the cost required.

There are some proxies that used by the previous researcher, Anbar & Alper (2011) measuring profitability using Return on Assets (ROA) and Return on Equity (ROE) as a function of the determinant factors of specific variables of banks and macroeconomics. Saleem & Rehman (2011) use ROA, ROE and Return on Investment (ROI) as proxy of profitability, where liquidity gives significant impact to ROA but not significant to ROE and ROI. Alshatti (2015) also uses the same proxy of ROE and ROA as proxy of profitability, where its research finds that there is the influence of liquidity to bank profitability indicated by ROE and bank ROA.

Hahn & Powers (2010) examined the performance of banks by using Return on Assets (ROA) because ROA is a primary measure of the performance of banking industry (FDIC, 1995). ROA is one form of ROI, where the use of this measure is consistent with Porter's suggestion (1980, 1985) where ROI is an appropriate performance measure. Based on previous

research, ROA is defined as the net income divided by total assets (Lenz, 1980; Robinson & Pearce, 1988; Bernstein, 1993). On the other hand Al-Tamimi & Jabnoun (2010) measure the performance of banks with ROA and ROE.

Based on the description above, the performance of foreign banks in this study is measured by dimensions of:

- 1. CAR (Capital Adequacy Ratio)
- 2. ROA (Return on Asset)
- 3. ROE (Return on Equity)
- 4. NIM (Net Interest Margin)

Hypotheses

Based on the description above, the hypothesis is proposed as follow:

H: Macroeconomic Factor, Capital Structure and Liquidity effect on Performance (CAR, ROA, ROE, NIM) either simultaneously or partially.

METHODOLOGY

This study uses a quantitative method approach to achieve the purpose and to answer the question of the research as well as to examine the hypothesis. This study also uses a dynamic panel data analysis based on the frame of model data panel.

The type of data used is secondary data, i.e. data/information of foreign banks listed on Financial Service Authority period 2007-2016, sourced from OJK and BI. Meanwhile, the data collected is bank liquidity and performance.

The unit of analysis is restricted to foreign Bank who listed on OJK. The population in this study is foreign banks listed on Financial Service Authority period 2007-2016, as many as 10 banks (cross-section), where the periodization of financial statements is determined for 10 years i.e. 2007-2016 (time series). So the data obtained is a combination of cross section data and time series called as panel data. The panel data structure is expected to provide more information. The periodization of data is determined for 10 years (2007-2016), among others, to meet the requirements of data analysis and to represent the population taken.

The design of the analysis to be used in this study is the regression for panel data. Panel data regression is a regression analysis that combines time series data with a cross section, where the same cross section unit is measured at different times.

RESULT AND DISCUSSION

In this section will be described the results of hypothesis testing on the effect of Macroeconomic, Capital Structure and Liquidity to the Performance of Foreign Banks (Table 1). The performance of Foreign Banks is measured by CAR, ROA, ROE and NIM.

Table 1 RECAPITULATION OF THE EFFECT OF MACROECONOMIC, CAPITAL STRUCTURE, LIQUIDITY ON								
FOREIGN BANK PERFORMANCE								
Variable	Indicator		Foreign Ban	k Performace				
		CAR	ROA	ROE	NIM			
Macro	BI RATE	1491.904*	167.870*	787.974*	280.525*			
Economic	INFLATION	0.045	0.06	0.106	0.031			
Factor	EXCHANGE RATE	0	-0.001*	-0.003*	0.000*			
	INTERBANK OVERNIGHT	-0.458*	-0.167	-17.350*	-0.432*			
	(O/N) RATE							
Capital	DTA	-116.119*	-1.346	11.364	6.152*			
Structure	DTE	-0.018*	-0.001*	-0.008*	0			
	DPKTE	0.025	0.003*	0.013*	0			
	Method	Random Effect	Random Effect	Random Effect	Random Effect			
	F Test	10.832	16.866	17.917	20.342			
		(p-value=0.00)	(p-value=0.00)	(p-value=0.00)	(p-value=0.00)			
	\mathbb{R}^2	3.15625	3.921527778	4.024305556	4.236805556			

Macroeconomic, Capital Structure & Liquidity to Car

Model of Common (Pool) Effect or Fixed Effect

The test is done by Chow-Test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses fixed effect model.*

Table 2 RESULT OF CHOW TEST OF HYPOTESIS 1A						
Hypothesis	F count	Prob	Conclusion			
Hypotesis 1a	6.761311	0.000	H ₀ rejected;			
			Fixed Effect			

The calculation results $Prob < \alpha$ (0.05), so that can be concluded that H_1 is accepted, so the model used in this study is fixed effect model (Table 2).

The next process is selecting best panel model that still need to continue with Hausman Test to find out whether the model of panel data follows fixed effect model or random effect model.

Model of Fixed Effect or Random Effect

The test is done by Hausman test with hypothesis:

- *H*₀: *Model uses random effect model.*
- *H*₁: *Model uses fixed effect model.*

Table 3 RESULT OF HAUSMAN TEST OF HYPOTESIS 1A							
Hypothesis	Statistics Test χ^2	Prob	Conclusion				
Hypothesis 1a	0.0000	1.0000	H ₀ accepted				
			Random Effect				

Based on the above Table 3 it is known that p value> α (0.05), so that H₀ is accepted, then it can be concluded that the data more precisely to use random effect model.

Model of Common Effect or Random Effect

The test done by Hausman test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses random effect model.*

Table 4 RESULT OF LAGRANGE MULTIPLIER (LM) TEST OF HYPOTHESIS 1A				
Hypothesis	Statistics Lagrange Multiplier (LM)	Prob	Conclusion	
Hypothesis 1a	30.87070	0.0000	H ₀ rejected Random Effect	
			Random Effect	

Based on the above Table 4 it is known that p value> α (0.05), so that H₀ is rejected, then it can be concluded that the data more precisely to use random effect model.

Table 5 RESULT OF RANDOM EFFECT ESTIMATION OF HYPOTHESIS 1A							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	41.96339	39.32665	1.067047	0.2888			
BIRATE	968.9789	354.9687	2.729759	0.0076			
INFLATION	0.657810	0.970286	0.677956	0.4996			
EXCHANGE RATE	-0.000332	0.001343	-0.247051	0.8054			
INTERBANK OVERNIGHT (O/N) RATE	1.318105	0.507298	2.598285	0.0109			
DTA	-87.57441	34.12119	-2.566569	0.0119			
DTE	-0.020530	0.006439	-3.188469	0.0020			
DPKTE	0.028914	0.012298	2.351205	0.0209			
LP	70.96147	25.13792	2.822885	0.0059			
LI	-35.74618	34.39478	-1.039291	0.3015			
Effects Specification	n		S.D.	Rho			
Cross-section rando	m		8.726276	0.1550			
Idiosyncratic rando	m		20.37397	0.8450			
Weigh	nted Statistics			•			
R-squared 0.478403 Mean dependent var							
Adjusted R-squared	0.425658	S.D. depe	ndent var	29.43847			
S.E. of regression	22.31518	Sum squa	red resid	44319.10			
F-statistic	9.069989	Durbin-W	atson stat	0.891789			

	Гable 5 Г ESTIMATION OF HYPOTHESIS 1А
Prob(F-statistic)	0.00000

The test results in Table 5 of Econometric Model are:

 $CAR_{it} = 41.96339 + 968.9789BIRATE_{it} + 0.657810INFL_{it} - 0.000332EXCH_{it} + 1.318105ONINT_{it} - 87.57441DTA_{it} - 0.020530DTE_{it} + 0.028914DPKTE_{it} + 70.96147LP_{it} - 35.74618LI_{it} + e10_{it}$

The regression equation above is in line with the hypothesis proposed that the increasing of macroeconomics factors and capital structure as well as liquidity will improve CAR (Performance).

Simultaneous Hypothesis (1)

- *H*₀: $\beta_{31} = \beta_{32} = \beta_{33} \dots \beta_{37} = 0$; there is no effect of macroeconomics factor and capital structure as well as liquidity on CAR.
- *H*₁: At least there is $\beta_{ij} \neq 0$; there is the effect of macroeconomics factor and capital structure as well as liquidity on CAR.

SIMULTAN	Table 6 SIMULTANEOUS TESTING OF HYPOTHESIS 1A						
Hypothesis	F -statistic	Prob (F -statistic)	Description				
Hypothesis 1a	9.069989	0.000*	H ₀ rejected				

*Significant at α =0.05

The result of testing in Table 6 shows that there is the simultaneous effect of macroeconomics factor and capital structure as well as liquidity on CAR, with the value of R^2 resulted from the model is 47.84%.

Partial Hypothesis

Table 7 PARTIAL TESTING OF HYPOTHESIS 1A						
Hypothesis	β _{ij}	t-Statistic	Prob	Description		
BIRATE	968.9789	2.729759	0.0076	Significant		
INFLATION	0.657810	0.677956	0.4996	Not Significant		
EXCHANGE RATE	-0.000332	-0.247051	0.8054	Not Significant		
INTERBANK OVERNIGHT (O/N) RATE	1.318105	2.598285	0.0109	Significant		
DTA	-87.57441	-2.566569	0.0119	Significant		
DTE	-0.020530	-3.188469	0.0020	Significant		
DPKTE	0.028914	2.351205	0.0209	Significant		
LP	70.96147	2.822885	0.0059	Significant		
LI	-35.74618	-1.039291	0.3015	Not Significant		

Partially only BIRATE, Interbank Overnight (O/N) Rate, DTA, DTE, DPKTE and LP which have a significant effect on CAR (Table 7).

Macroeconomic, Capital Structure & Liquidity to ROA

Model of Common (Pool) Effect or Fixed Effect

The test is done by Chow-Test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses fixed effect model.*

Tabel 8 RESULT OF CHOW TEST OF HYPOTHESIS 1B							
Hypothesis	F count	Prob	Conclusion				
Hypothesis 1b	9.239678	0.0000	H ₀ rejected; Fixed Effect				

The calculation results $Prob < \alpha$ (0.05), so that can be concluded that H_1 is accepted, so the model used in this study is fixed effect model (Table 8).

The next process is selecting best panel model that still need to continue with Hausman Test to find out whether the model of panel data follows fixed effect model or random effect model.

Model of Fixed Effect or Random Effect

The test is done by Hausman test with hypothesis:

- *H*₀: *Model uses random effect model.*
- *H*₁: *Model uses fixed effect model.*

Table 9 RESULT OF HAUSMAN TEST OF HYPOTESIS 1B						
Hypothesis	Statistic $U_{ji} \chi^2$	Prob	Conclusion			
Hypothesis 1b	0.0000	1.0000	H ₀ accepted			
			Random Effect			

Based on the above Table 9 it is known that p value> α (0.05), so that H₀ is accepted, then it can be concluded that the data more precisely to use random effect model.

Model of Common Effect or Random Effect

The test done by Hausman test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses random effect model.*

Г

٦

Table 10 RESULT OF LAGRANGE MULTIPLIER (LM) TEST OF HYPOTHESIS 1B					
Hypothesis	Statistic Lagrange Multiplier (LM)	Prob	Conclusion		
Hypothesis 1b	72.69979	0.0000	H ₀ rejected		
			Random Effect		

Based on the above Table 10, it is known that p value $<\alpha$ (0.05) so that H₀ is rejected, it can be concluded that the data more precisely to use random effect model.

Table 11 RESULT OF RANDOM EFFECT ESTIMATION OF HYPOTHESIS 1B							
Variable	Coefficient	Std.	Error	t-Statistic	Prob.		
С	-2.755719	3.16	53573	-0.871078	0.3861		
BIRATE	182.1704	30.0)1244	6.069828	0.0000		
INFLATION	0.023615	0.08	32482	0.286307	0.7753		
EXCHANGE RATE	-0.000486	0.00	0114	-4.248783	0.0001		
INTERBANK OVERNIGHT (O/N) RATE	-0.233849	0.21	2903	-1.098386	0.2750		
DTA	0.323598	2.66	6179	0.121371	0.9037		
DTE	-0.001567	0.00	0545	-2.876799	0.0050		
DPKTE	0.002760	0.00	01042	2.648363	0.0096		
LP	-3.620585	1.54	8350	2.338351	0.0215		
LI	-1.248571	2.76	6482	-0.451321	0.6529		
Effects Specification	on			S.D.	Rho		
Cross-section rando	om			0.576867	0.0994		
Idiosyncratic rando	om			1.736276	0.9006		
Wei	ghted Statistics	5					
R-squared	0.52038	7	Mean	dependent var	2.491038		
Adjusted R-squared	0.471887 S.D. dependent var			2.802090			
S.E. of regression	2.03926	7	Sum s	squared resid	370.1161		
F-statistic	10.7295	9	Durbi	n-Watson stat	0.940878		
Prob(F-statistic) 0.000000							

The test results in Table 11 of Econometric Model are:

$$\label{eq:result} \begin{split} &ROA_{it} \!\!=\!\!-2.755719 \!+\! 182.1704 BIRATE_{it} \!+\! 0.023615 INFL_{it} \!-\! 0.000486 EXCH_{it} \!\!-\! 0.233849 ONINT_{it} \!\!+\! 0.323598 DTA_{it} \!\!-\! 0.001567 DTE_{it} \!\!+\! 0.002760 DPKTE_{it} \!\!-\! 3.620585 LP_{it} \!\!-\! 1.248571 LI_{it} \!\!+\! e13_{it} \end{split}$$

The regression equation above is in line with the hypothesis proposed that the increasing of macroeconomics factors and capital structure as well as liquidity will improve ROA (performance).

Simultaneous Hypothesis (2)

- *H*₀: $\beta_{61} = \beta_{62} = \beta_{63} \dots \beta_{67} = 0$; there is no effect of macroeconomics factor and capital structure as well as liquidity on ROA.
- *H*₁: At least there is $\beta_{ij} \neq 0$; there is the effect of macroeconomics factor and capital structure as well as liquidity on ROA.

Table 12 SIMULTANEOUS TESTING OF HYPOTHESIS 1B						
Hypothesis F-statistic Prob(F-statistic) Description						
Hypothesis 1b	10.72959	0.0000*	H ₀ rejected			

*Significant at α =0.05

The result in Table 12 of testing shows that simultaneously there is the effect of macroeconomic factor and capital structure as well as liquidity on ROA, with the value of R^2 resulted from the model is 52.04%.

Partial Hypothesis

Table 13PARTIAL TESTING OF HYPOTHESIS 1B					
Hypothesis	β _{ii}	t-Statistic	Prob	Description	
BIRATE	182.1704	6.069828	0.0000	Significant	
INFLATION	0.023615	0.286307	0.7753	Not Significant	
EXCHANGE RATE	-0.000486	-4.248783	0.0001	Significant	
INTERBANK OVERNIGHT (O/N) RATE	-0.233849	-1.098386	0.2750	Not Significant	
DTA	0.323598	0.121371	0.9037	Not Significant	
DTE	-0.001567	-2.876799	0.0050	Significant	
DPKTE	0.002760	2.648363	0.0096	Significant	
LP	-3.620585	2.338351	0.0215	Significant	
LI	-1.248571	-0.451321	0.6529	Not significant	

Partially only BIRATE, Exchange Rate, DTE, DPKTE and LP which have a significant effect on ROA (Table 13).

Macroeconomic, Capital Structure & Liquidity to ROE

Model of Common (Pool) Effect or Fixed Effect

The test is done by Chow-Test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses fixed effect model.*

Table 14RESULT OF CHOW TEST OF HYPOTHESIS 1C				
Hypothesis	F count	Prob	Conclusion	
Hypothesis 1c	12.258481	0.0000	H ₀ rejected;	
			Fixed Effect	

The calculation results $Prob < \alpha$ (0.05), so that can be concluded that H_1 is accepted, so the model used in this study is fixed effect model (Table 14).

The next process is selecting best panel model that still need to continue with Hausman Test to find out whether the model of panel data follows fixed effect model or random effect model.

Model of Fixed Effect or Random Effect

The test is done by Hausman test with hypothesis:

- *H*₀: *Model uses random effect model.*
- *H*₁: *Model uses fixed effect model.*

Tabel 15 RESULT OF HAUSMAN TEST OF HYPOTESIS 1C				
Hypothesis	Statistic $U_{ji} \chi^2$	Prob	Conclusion	
Hypothesis 1c	0.0000	1.0000	H ₀ accepted	
			Random Effect	

Based on the above Table 15 it is known that p value> α (0.05), so that H₀ is accepted, then it can be concluded that the data more precisely to use random effect model.

Model of Common Effect or Random Effect

The test done by Hausman test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses Random effect model.*

Table 16 RESULT OF LAGRANGE MULTIPLIER (LM) TEST OF HYPOTHESIS 1C				
Hypothesis	Statistic Lagrange Multiplier (LM)	Prob	Conclusion	
Hypothesis 1c	96.91325	0.0000	H ₀ rejected Random Effect	
			Random Effect	

Based on the above Table 16 it is known that p value< α (0.05) so that H₀ is rejected, it can be concluded that the data more precisely to use random effect model.

Table 17 RESULT OF RANDOM EFFECT ESTIMATION OF HYPOTHESIS 1C						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-5.372930	18.59716	-0.288911	0.7733		
BIRATE	905.5274	140.4776	6.446061	0.0000		
INFLATION	-0.151358	0.376486	-0.402027	0.6886		
EXCHANGE RATE	-0.002490	0.000520	-4.791602	0.0000		
INTERBANK OVERNIGHT (O/N) RATE	-2.401873	0.978840	-2.453796	0.0161		

Table 17 RESULT OF RANDOM EFFECT ESTIMATION OF HYPOTHESIS 1C							
DTA	0.662717	17.30920	0.038287	0.9695			
DTE	-0.006850	0.002530	-2.706904	0.0081			
DPKTE	0.011674	0.004813	2.425675	0.0173			
LP	-26.07934	10.88442	-2.396025	0.0187			
LI	-20.50477	15.52283	-1.320943	0.1899			
Effects Specification				Rho			
Cross-section rando	m		7.910843	0.5042			
Idiosyncratic rando	m		7.844646	0.4958			
Weigh	nted Statistics						
R-squared	0.599487	487 Mean dependent var 4.10					
Adjusted R-squared	0.558985	0.558985 S.D. dependent var 12.		12.03884			
S.E. of regression	7.997622	2 Sum squared resid 5692		5692.615			
F-statistic	14.80165	Durbin-Watson stat 1.17582		1.175829			
Prob(F-statistic) 0.000000							

The test results in Table 17 of Econometric Model are:

 $ROE_{it} = -5.372930 + 905.5274BIRATE_{it} - 0.151358INFL_{it} - 0.002490EXCH_{it} - 0.401873ONINT_{it} \\ + 0.662717DTA_{it} - 0.006850DTE_{it} + 0.011674DPKTE_{it} - 26.07934LP_{it} - 20.50477LI_{it} + e14_{it}$

The regression equation above is in line with the hypothesis proposed that the increasing of macroeconomics factors and capital structure as well as liquidity will improve ROE (Performance).

Simultaneous Hypothesis (3)

- *H*₀: $\beta_{71} = \beta_{72} = \beta_{73} \dots \beta_{77} = 0$; there is no effect of macroeconomics factor and capital structure as well as liquidity on ROE.
- *H*₁: At least there is $\beta_{ij} \neq 0$; there is the effect of macroeconomics factor and capital structure as well as liquidity on ROE.

P SIMULTA	Tabel 18 P SIMULTANEOUS TESTING OF HYPOTHESIS 1C					
Hypothesis F-statistic Prob(F-statistic) Description						
Hypothesis 1c	14.80165	0.0000*	H ₀ rejectes			

*Significant at α =0.05

The result in Table 18 of testing shows that simultaneously there is the effect of macroeconomic factor and capital structure as well as liquidity on ROE, with the value of R^2 resulted from the model is amounted to 59.95%.

Partial Hypothesis

Table 19 PARTIAL TESTING OF HYPOTHESIS 1C						
Hypothesis	β _{ij}	t-Statistic	Prob	Description		
BIRATE	905.5274	6.446061	0.0000	Significant		
INFLATION	-0.151358	-0.402027	0.6886	Not Significant		
EXCHANGE RATE	-0.002490	-4.791602	0.0000	Significant		
INTERBANK OVERNIGHT (O/N) RATE	-2.401873	-2.453796	0.0161	Significant		
DTA	0.662717	0.038287	0.9695	Not Significant		
DTE	-0.006850	-2.706904	0.0081	Significant		
DPKTE	0.011674	2.425675	0.0173	Significant		
LP	-26.07934	-2.396025	0.0187	Significant		
LI	-20.50477	-1.320943	0.1899	Not Significant		

Partially only BIRATE, Exchange Rate, Interbank Overnight (O/N) Rate, DTE, DPKTE and LP which have a significant effect on ROE (Table 19).

Macroeconomic, Capital Structure & Liquidity to NIM

Model of Common (Pool) Effect or Fixed Effect

The test is done by Chow-Test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses fixed effect model.*

Table 20RESULT OF CHOW TEST OF HYPOTHESIS 1D				
Hypothesis	F hitung	Prob	Conclusion	
Hypothesis 1d	6.991251	0.0000	H ₀ rejected;	
			Fixed Effect	

The calculation results $\text{Prob} < \alpha$ (0.05) so that can be concluded that H_1 is accepted, so the model used in this study is fixed effect model (Table 20).

The next process is selecting best panel model that still need to continue with Hausman Test to find out whether the model of panel data follows fixed effect model or random effect model.

Model of Fixed Effect or Random Effect

The test is done by Hausman test with hypothesis:

- *H*₀: *Model uses random effect model.*
- *H*₁: *Model uses fixed effect model.*

Г

Table 21 RESULT OF HAUSMAN TEST OF HYPOTESIS 1D					
Hypothesis	Statistik $U_{ii} \chi^2$	Prob	Conclusion		
Hypothesis 1d	0.0000	1.0000	H ₀ accepted		
			Random Effect		

Based on the above Table 21 it is known that p value> α (0.05) so that H₀ is accepted, then it can be concluded that the data more precisely to use random effect model.

Model of Common Effect or Random Effect

The test done by Hausman test with hypothesis:

- *H*₀: *Model uses common effect model.*
- *H*₁: *Model uses random effect model.*

Table 22 RESULT OF LAGRANGE MULTIPLIER (LM) TEST OF HYPOTHESIS 1D				
Hypothesis	Statistic Lagrange Multiplier (LM)	Prob	Conclusion	
Hypothesis 1d	29.62981	0.0000	H ₀ rejected Random Effect	
			Random Effect	

Based on the above Table 22 it is known that p value $<\alpha$ (0.05) so that H₀ is rejected, then it can be concluded that the data more precisely to use random effect model.

Table 23 RESULT OF RANDOM EFFECT ESTIMATION OF HYPOTHESIS 1D								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	-13.48899	4.160675	-3.242019	0.0017				
BIRATE	272.9219	36.63059	7.450656	0.0000				
INFLATION	0.062627	0.099858	0.627159	0.5322				
EXCHANGE RATE	-0.000346	0.000138	-2.505321	0.0141				
INTERBANK OVERNIGHT (O/N) RATE	-0.382705	0.158209	2.418984	0.0175				
DTA	4.187919	1.656723	2.527833	0.0132				
DTE	-0.000113	0.000664	-0.169540	0.8658				
DPKTE	0.000276	0.001267	0.217478	0.8283				
LP	2.731567	1.333774	333774 2.047998					
LI	2.071330	3.630298	0.570568	0.5697				
Effects Specification			S.D.	Rho				
Cross-section random			1.006976	0.1878				
Idiosyncratic random			2.094304	0.8122				
Weighted Statistics								
R-squared	0.580744	Mean dependent var		2.597837				
Adjusted R-squared	0.538348	S.D. dependent var		3.372903				
S.E. of regression	2.290624	Sum squared resid		466.9795				
F-statistic	13.69788	Durbin-Watson stat 1.0641						

_	Cable 23C ESTIMATION OF HYPOTHESIS 1D
Prob(F-statistic)	0.00000

The test results in Table 23 of Econometric Model are:

$$\label{eq:NIM_it} \begin{split} \text{NIM}_{it} = & -13.48899 + 272.9219 \\ \text{BIRATE}_{it} + 0.062627 \\ \text{INFL}_{it} - 0.000346 \\ \text{EXCH}_{it} - 0.382705 \\ \text{ONINT}_{it} + 4.187919 \\ \text{DTA}_{it} - 0.000113 \\ \text{DTE}_{it} + 0.000276 \\ \text{DPKTE}_{it} - 2.731567 \\ \text{LP}_{it} + 2.071330 \\ \text{LI}_{it} + e15_{it} \end{split}$$

The regression equation above is in line with the hypothesis proposed that the increasing of macroeconomics factors and capital structure as well as liquidity will improve NIM (Kinerja). Simultaneous Hypothesis (4)

- H₀: $\beta_{81}=\beta_{82}=\beta_{83}...\beta_{87}=0$; there is no effect of macroeconomics factor and capital structure as well as liquidity on NIM.
- H₁: At least there is $\beta_{ij} \neq 0$; there is the effect of macroeconomics factor and capital structure as well as liquidity on NIM.

Table 24 SIMULTANEOUS TESTING OF HYPOTHESIS 1D							
Hypothesis	F -statistic	Prob (F -statistic)	Description				
Hypothesis 1d	13.69788	0.0000*	H ₀ rejected				

*Significant at α=0.05

The result of testing shows that there is the simultaneous effect of macroeconomics factor and capital structure as well as liquidity on NIM, with the value of R^2 resulted from the model is 58% (Table 24).

Partial Hypothesis

Table 25 PARTIAL TESTING OF HYPOTESIS 1D							
Hypothesis	β _{ij}	t-Statistic	Prob	Description			
BIRATE	272.9219	7.450656	0.0000	Significant			
INFLATION	0.062627	0.627159	0.5322	Not Significant			
EXCHANGE RATE	-0.000346	-2.505321	0.0141	Significant			
INTERBANK OVERNIGHT (O/N) RATE	-0.382705	2.418984	0.0175	Significant			
DTA	4.187919	2.527833	0.0132	Significant			
DTE	-0.000113	-0.169540	0.8658	Not Significant			
DPKTE	0.000276	0.217478	0.8283	Not Significant			
LP	2.731567	2.047998	0.0434	significant			
LI	2.071330	0.570568	0.5697	Not Significant			

Partially only BIRATE, Exchange Rate, Interbank Overnight (O/N) Rate, DTA and LP which have a significant effect on ROE (Table 25).

CONCLUSION AND RECOMMENDATION

Conclusion

Macroeconomic factor, Capital Structure and liquidity simultaneously effect on the performance of foreign bank in Indonesia. Partially:

- 1. BIRATE, Interbank Overnight (O/N) Rate, DTA, DTE, DPKTE and Precautionary liquidity which have a significant effect on CAR.
- 2. BIRATE, Exchange Rate, DTE, DPKTE and LP which have a significant effect on ROA.
- 3. BIRATE, Exchange Rate, Interbank Overnight (O/N) Rate, DTE, DPKTE and LP which have a significant effect on ROE.
- 4. BIRATE, Exchange Rate, INTERBANK OVERNIGHT (O/N) RATE, DTA and LP which have a significant effect on ROE.

Recommendation

The result of this study is expected to be a recommendation for the management of foreign banks in increasing their performance especially ROE and NIM through the increase of liquidity. This finding is resulted from the unit of analysis of foreign bank listed in Financial Service Authority, so the next research can be study by taking the unit of analysis of national banking.

REFERENCES

- Al-Tamimi, H. & Hassan, A. (2010). Factors influencing performance of the UAE Islamic and conventional national banks. Department of Accounting, Finance and Economics, College of Business Administration, University of Sharjah.
- Alshatti, A.S. (2015). The effect of the liquidity management on profitability in the Jordanian commercial banks. *International Journal of Business and Management*, 10(1), 62-71.
- Anbar, A. & Alper, D. (2011). Bank specific and macroeconomic determinants of commercial bank profitability: Empirical evidence from Turkey. *Business and Economics Research Journal*, 2(2), 139-152.
- Bank for International Settlements (2008). Principles for sound liquidity risk management and bank for international settlements. Diambil kembali dari.
- Bernstein, L.A. (1993). *Financial statement analysis: Theory, application and interpretation (5th Edition)*. Boston, MA: Irwin.
- Diamond, D. & Dybvig, P. (1983). Bank runs, deposit insurance and liquidity. Journal of Political Economy, 105(91), 401-419.
- Farag, M., Harland, D. & Nixon, D. (2013). Bank capital and liquidity.
- FDIC (1995). The FDIC quarterly banking profile. Washington, D.C.: The Federal Deposit Insurance Corporation.
- Gitman, L. (2009). Principles of managerial finance (12th Edition). The Addison.
- Hahn, W. & Powers, T.L. (2010). Strategic plan quality, implementation capability and firm performance. *Academy* of Strategic Management Journal, 9(1), 63-81.
- Koch, T. & Mac Donald, S. (2000). *Bank management*. Orlando: The Dryden Press, Harcourt Brace College Publishers.
- Lartey, V.C., Antwi, S. & Boadi, E. (2013). The relationship between liquidity and profitability of listed banks in Ghana. *International Journal of Business and Social Science*, 4(3), 48-56.
- Lenz, R.T. (1980). Environment, strategy, organization structure and performance: Patterns in one industry. *Strategic Management Journal*, 1, 227-248.

- Moore, W. (2009). *How do financial crises affect commercial bank liquidity? Evidence from Latin America and the Caribbean.*
- Myers, S. & Rajan, R. (1998). The paradox of liquidity. Quarterly Journal of Economics, 113, 733-771.
- Owolabi, S., Obiakor, R. & Okwu, A. (2011). Investigating liquidity-profitability relationship in business organizations: A study of selected quoted companies in Nigeria. *British Journal of Economics, Finance and Management Sciences*, 1(2), 11-29.
- Porter, M.E. (1980). Competitive strategy: Techniques for analyzing industries and competitors. The Free Press.
- Porter, M.E. (1985). Competitive advantage: Creating and sustaining superior performance: With a new introduction. The Free Press: New York, USA
- Rauch, C., Steffen, S., Hackethal, A. & Tyrell, M. (2008). *Determinants of bank liquidity creation-evidence from savings banks*. Working Paper, Germen.
- Robinson, R.B. & Pearce, J.A. (1983). The impact of formalized strategic planning on financial performance in small firms. *Strategic Management Journal*, *4*, 197-207.
- Saleem, Q. & Rehman, R.U. (2011). Impacts of liquidity ratios on profitability. *Interdisciplinary Journal of Research in Business*, 1(7), 95-98.
- Sauer, S. (2007). Liquidity risk and monetary policy. Munich: Department of Economics, University of Munich.
- Vodova, P. (2011). Liquidity of Czech commercial banks and its determinants. *International Journal of Mathematical Models and Methods in Applied Sciences*, 5(6), 1060-1067.
- Williamson, S. (2008). Liquidity constraints in the new pargrave dictionary of economics (2nd Edition). Steven Durlauf & lawrence Blume.
- Yeager, F. & Seitz, N. (1989). *Financial institution management: Text and cases (3rd Edition)*. New Jersey: Prentice Hall: Englewood Cliffs.