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ABSTRACT 
 
This paper provides a non-technical introduction to auction theory. Despite the rapidly 

expanding literature using auction theory, and the few textbooks introducing it to upper-level 
Ph.D. students, the explanation in most undergraduate textbooks is very obscure and incomplete. 
This paper offers an introduction to auctions, analyzing optimal bidding behavior in first- and 
second-price auctions, and finally examines bidding strategies in common-value auctions and 
the winner’s curse. Unlike graduate textbooks on auction theory, the paper only assumes a basic 
knowledge of algebra and calculus, and uses worked-out examples and figures, thus making the 
explanation accessible for both Economics and Business majors. 
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INTRODUCTION 
 
Auctions have always been a large part of the economic landscape, with some auctions 

reported as early as in Babylon in about 500 B.C. and during the Roman Empire, in 193 A.D.3 
Auctions with precise set of rules emerged in 1595, where the Oxford English Dictionary first 
included the entry; and auctions houses like Sotheby's and Christie's were founded as early as 
1744 and 1766, respectively. Commonly used auctions nowadays, however, are often online, 
with popular websites such as eBay, with US$11 billion in total revenue and more than 27,000 
employees worldwide, which attracted the entry of several competitors into the online auction 
industry, such as QuiBids recently. 

Auctions have also been used by governments throughout history. In addition to 
auctioning off treasury bonds, in the last decade governments started to sell air waves (3G 
technology). For instance, the British 3G telecom licenses generated Euro 36 billion in what 
British economists called "the biggest auction ever," and where several game theorists played an 
important role in designing and testing the auction format before its final implementation. In fact, 
the specific design of 3G auctions created a great controversy in most European countries during 
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the 1990s since, as the following figure from McKinsey (2002) shows, countries with similar 
population collected enormously different revenues from the sale, thus suggesting that some 
countries (such as Germany and the UK) better understood bidders' strategic incentives when 
participating in these auctions, while others essentially overlooked these issues, e.g., Netherlands 
or Italy. 

 

 
Fig 1. Prices of 3G licences. 

 
Despite the rapidly expanding literature using auction theory, only a few graduate-level 

textbooks about this topic have been published; such as Krishna (2002), Milgrom (2004), 
Menezes and Monteiro (2004) and Klemperer (2004). These textbooks, however, introduce 
auction theory to upper-level (second year) Ph.D. students, using advanced mathematical 
statistics and, hence, are not accessible for undergraduate students. In addition, most 
undergraduate textbooks do not cover the topic, or present short verbal descriptions about it; see, 
for instance, Pindyck and Rubinfeld (2012) pp. 516-23, Perloff (2011) pp. 462-66, or Besanko 
and Braeutigam (2011) pp. 633-42.4 In order to provide an attractive introduction to auction 
theory to undergraduate students, this paper only assumes a basic knowledge of algebra and 
calculus, and uses worked-out examples and figures. As a consequence, the explanations are 
appropriate for intermediate microeconomics and game theory courses, both for economics and 
business majors. In particular, the paper emphasizes the common ingredients in most auction 
formats (understanding them as allocation mechanism). Then, it analyzes optimal bidding 
behavior in first-price auctions (section three) and in second-price auctions (section four). 
Finally, section five examines bidding strategies in common-value auctions and the winner's 
curse. 
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AUCTIONS AS ALLOCATION MECHANISMS 
 
Consider N bidders who seek to acquire a certain object, where each bidder i has a valuation 

 for the object, and assume that there is one seller. Note that we can design many different 

rules for the auction, following the same auction formats we commonly observe in real life 
settings. For instance, we could use: 

 
1. First-price auction (FPA), whereby the winner is the bidder submitting the highest bid, 

and he/she must pay the highest bid (which in this case is his/hers). 

2. Second-price auction (SPA), where the winner is the bidder submitting the highest bid, 

but in this case he/she must pay the second highest bid. 

3. Third-price auction, where the winner is still the bidder submitting the highest bid, but 

now he/she must pay the third highest bid. 

4. All-pay auction, where the winner is still the bidder submitting the highest bid, but in this 

case every single bidder must pay the price he/she submitted. 

Importantly, several features are common in the above auction formats, implying that all 
auctions can be interpreted as allocation mechanisms with two main ingredients: 

a) An allocation rule, specifying who gets the object. The allocation rule for most auctions 

determines that the object is allocated to the bidder submitting the highest bid. This was, 

in fact, the allocation rule for all four auction formats considered above. However, we 

could assign the object by using a lottery, where the probability of winning the object is a 

ratio of my bid relative to the sum of all bidders' bids, i.e., prob(win)= , an 

allocation rule often used in certain Chinese auctions. 

b) A payment rule, which describes how much every bidder must pay. For instance, the 

payment rule in the FPA determines that the individual submitting the highest bid pays 

his own bid, while everybody else pays zero. In contrast, the payment rule in the SPA 

specifies that the individual submitting the highest bid (the winner) pays the second-

highest bid, while everybody else pays zero. Finally, the payment rule in the all-pay 

auction determines that every individual must pay the bid that he/she submitted.5 
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Privately observed valuations 
Before analyzing equilibrium bidding strategies in different auction formats, note that 

auctions are strategic settings where players must choose their strategies (i.e., how much to bid) 
in an incomplete information context.6 In particular, every bidder knows his/her own valuation 
for the object, , but does not observe other bidder j's valuation, . That is, bidder i is “in the 

dark” about his opponent's valuation. 
Despite not observing j's valuation, bidder i knows the probability distribution behind 

bidder j's valuation. For instance, vj can be relatively high, e.g., , with probability 0.4, or 

low, , otherwise (with probability 0.6). More generally, bidder j's valuation, , is 

distributed according to a cumulative distribution function , intuitively 

representing that the probability that  lies below a certain cutoff v is exactly F(v). For 

simplicity, we normally assume that every bidder's valuation for the object is drawn from a 
uniform distribution function between 0 and 1, i.e., .7 The following figure illustrates 

this uniform distribution where the horizontal axis depicts  and the vertical axis measures the 

cumulated probability . For instance, if bidder i's valuation is v, then all points to the left-

hand side of v in the horizontal axis represent that , entailing that bidder j's valuation is 

lower than bidder i's. The mapping of these points into the vertical axis gives us the probability 
 which, in the case of a uniform distribution entails .8 Similarly, 

the valuations to the right-hand side of v describe points where  and, thus, bidder j's 

valuation is higher than that of bidder i. Mapping these points into the vertical axis we obtain the 
probability which, under a uniform distribution, implies 

. 

 
Fig 2. Uniform probability distribution. 
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Importantly, since all bidders are ex-ante symmetric, they will all be using the same 
bidding function, ₊, which maps bidder i's valuation, , into a precise bid, 

. However, the fact that bidders use a symmetric function does not imply that all of them 

submit the same bid. Indeed, depending on his privately observed valuation for the object, 
bidding function  prescribes that bidders can submit different bids. As an example, 

consider a symmetric bidding function . Hence, a bidder with valuation  will 

submit a bid of , while a different bidder whose valuation is  would 

submit a bid of . In other words, even if bidders are symmetric in the 

bidding function they use, they can be asymmetric in the actual bid they submit. 
 

FIRST-PRICE AUCTIONS 
 
Let's start analyzing equilibrium bidding behavior in the first-price auction (FPA). First, 

note that submitting a bid above one's valuation,  is a dominated strategy. In particular, 

the bidder would obtain a negative payoff if winning, since his expected utility from 
participating in the auction 

 

	
 
would be negative, since  regardless of his probability of winning. Note that in the above 

expected utility, we specify that, upon winning, bidder i receives a net payoff of , i.e., the 

difference between his true valuation for the object and the bid he submits (which ultimately 
constitutes the price he pays for the good if he were to win).9 Similarly, submitting a bid  that 

exactly coincides with one's valuation,  also constitutes a dominated strategy since, even 

if the bidder happens to win, his expected utility would be zero, i.e., 
, given that . Therefore, the equilibrium bidding 

strategy in a FPA must imply a bid below one's valuation, . That is, bidders must practice 

what is usually referred to as "bid shading." In particular, if bidder i's valuation is , his bid 

must be a share of his true valuation, i.e.,  where . The following figure 

illustrates bid shading in the FPA, since bidding strategies must lie below the 45-degree line. 
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Fig 3. "Bid shading" in the FPA. 

 
A natural question at this point is: How intense bid shading must be in the FPA? Or, 

alternatively, what is the precise value of the bid shading parameter a? In order to answer such 
question, we must first describe bidder i's expected utility from submitting a given bid x, when 
his valuation for the object is , 

 

	
 

Before continuing our analysis, we still must precisely characterize the probability of 
winning in the above expression, i.e., . Specifically, upon submitting a bid , 

bidder j can anticipate that bidder i's valuation is , by just inverting the bidding function 

 i.e., solving for vi in . This inference is illustrated in 

the figure below where bid x in the vertical axis is mapped into the bidding function  which 

corresponds to a valuation of  in the horizontal axis. Intuitively, for a bid x, bidder j can use the 

symmetric bidding function  to “recover” bidder i's valuation, . 
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Fig 4. "Recovering" bidder i's valuation. 

 
Hence, the probability of winning is given by  and, according to the 

vertical axis in the previous figure, . If, rather than describing 

probability  from the point of view of bids (see shaded portion of the vertical axis 

in figure 5 below), we characterize it from the point of view of valuations (in the shaded segment 

of the horizontal axis), we obtain that . 
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Fig. 5. Probability of winning in the FPA. 
 
Indeed, the shaded set of valuations in the horizontal axis illustrates valuations of bidder 

j, , for which his bid lies below player i's bid x. In contrast, valuations  satisfying  

entail that player j's bids would exceed x, implying that bidder j wins the auction. Hence, if the 

probability that bidder i wins the object is given by , and valuations are uniformly 

distributed, then .10 We can now plug this probability of winning into bidder 

i's expected utility from submitting a bid of x in the FPA, as follows 
 

	
 

Taking first-order conditions11 with respect to bidder i's bid, x, we obtain  

which, solving for x yields bidder i's optimal bidding function . Intuitively, this 

bidding function informs bidder i how much to bid, as a function of his privately observed 

valuation for the object, . For instance, when , his optimal bid is . 

This bidding function implies that, when competing against another bidder j, and only  

players participate in the FPA, bidder i shades his bid in half, as the following figure illustrates. 
 

  
Fig 6. Optimal bidding function with N=2 bidders. 
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Extending the first-price auction to N bidders 

 
Our results are easily extensible to FPA with N bidders. In particular, the probability of 

bidder i winning when submitting a bid of $x is 
 

	

 
	

where we evaluate the probability that the valuation of all other N-1 bidders, 
 (expect for bidder i) lies above the valuation  that generates a 

bid of exactly x dollars. Hence, bidder i's expected utility from submitting x becomes 
 

 
 

Taking first-order conditions with respect to his bid, x, we obtain 
 

 
 

Rearranging, , and solving for x, we find bidder i's optimal 

bidding function,  The following figure depicts the bidding function for the case 

of N=2, N=3, and N=4 bidders, showing that bid shading is ameliorated when more bidders 
participate in the auction, i.e., bidding functions approach the 45-degree line. Indeed, for N=2 the 

optimal bidding function is  , but it increases to  when N=3 bidders compete for the 

object, to  when N=4 players participate in the auction, etc. For an extremely large number 

of bidders, e.g., N=2,000, bidder i's optimal bidding function becomes  

and, hence, bidder i's bid almost coincides with his valuation for the object, describing a bidding 
function that approaches the 45-degree line. 

 



Page 110 

Journal of Economics and Economic Education Research, Volume 15, Number 2, 2014 

  
Fig 7. Optimal bidding function increases in N. 

 
Intuitively, if bidder i seeks to win the object, he can shade his bid when only another 

bidder competes for the good, since the probability of him assigning a large valuation to the 
object is relatively low. However, when several players compete in the auction, the probability 
that some of them have a high valuation for the object (and, thus submits a high bid) increases. 
That is, competition gets "tougher" as more bidders participate and, as a consequence, every 
bidder must increase his bid, ultimately ameliorating his incentives to practice bid shading. 
 
First-price auctions with risk-averse bidders 

 
Let us next analyze how our equilibrium results would be affected if bidders are risk 

averse, i.e., their utility function is concave in income, x, e.g., , where  

denotes bidder i's risk-aversion parameter. In particular, when  he is risk neutral, while 

when α decreases, he becomes risk averse.12 First, note that the probability of winning is 
unaffected, since, for a symmetric bidding function  for every bidder i, where 

, the probability that bidder i wins the auction against another bidder j is 

 

	
 
Therefore, bidder i's expected utility from participating in this auction is 
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where, relative to the case of risk-neutral bidders analyzed above, the only difference arises in 
the evaluation of the net payoff from winning, , which it is evaluated as . Taking 

first-order conditions with respect to his bid, x, we have 
 

 
 

and solving for x, we find the optimal bidding function, . Importantly, this case 

embodies that of risk-neutral bidders analyzed above as a special case. Specifically, when , 

bidder i's optimal bidding function becomes . However, when his risk aversion 

increases, i.e., α decreases, bidder i's optimal bidding function increases. Specifically,  
 

 
 

which is negative for all parameter values. In the extreme case in which α decreases to , 

the optimal bidding function becomes , and players do not practice bid shading. The 

following figure illustrates the increasing pattern in players' bidding function, starting from  

when bidders are risk neutral, , and approaching the 45-degree line (no bid shading) as 

players become more risk averse. 

  
Fig. 8. Optimal bidding function with risk-averse bidders. 
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Intuitively, a risk-averse bidder submits more aggressive bids than a risk-neutral bidder in 

order to minimize the probability of losing the auction. In particular, consider that bidder i 
reduces his bid from  to . In this context, if he wins the auction, he obtains an additional 

profit of ε, since he has to pay a lower price for the object he acquires. However, by lowering his 
bid, he increases the probability of losing the auction. Importantly, for a risk-averse bidder, the 
positive effect of slightly lowering his bid, arising from getting the object at a cheaper price, is 
offset by the negative effect of increasing the probability that he loses the auction. In other 
words, since the possible loss from losing the auction dominates the benefit from acquiring the 
object at a cheaper price, the risk-averse bidder does not have incentives to reduce his bid, but 
rather to increase it, relative to the risk-neutral bidders. 
 

SECOND-PRICE AUCTION 
 
In this class of auctions, bidding your own valuation, i.e., , is a weakly 

dominant strategy for all players. That is, regardless of the valuation you assign to the object, and 
independently on your opponents' valuations, submitting a bid  yields expected profit 

equal or above that from submitting any other bid, . In order to show this bidding 

strategy is an equilibrium outcome of the SPA, let's first examine bidder i's expected payoff from 
submitting a bid that coincides with his own valuation  (which we refer to as the First case 

below), and then compare it with what he would obtain from deviating to bids below his 
valuation for the object,  (denoted as Second case), or above his valuation, 

 (Third case). Let us next separately analyze the payoffs resulting from each bidding 

strategy. 
First case: If the bidder submits his own valuation, , then either of the following 

situations can arise (for presentation purposes, the figure below depicts each of the three cases 
separately): 

  
Fig 9. Cases arising when . 
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a) If his bid lies below the highest competing bid, i.e.,  where ,13 

then bidder i loses the auction, obtaining a zero payoff. 

b) If his bid lies above the highest competing bid, i.e., , then bidder i wins the 

auction. In this case, he obtains a net payoff of , since in a SPA the winning bidder 

does not have to pay the bid he submitted, but the second-highest bid, which is  in this 

case since . 

c) If, instead, his bid coincides with the highest competing bid, i.e., , then a tie 

occurs. For simplicity, ties are normally solved in auctions by randomly assigning the 

object to the bidders who submitted the highest bids. As a consequence, bidder i's payoff 

becomes , but with only  probability, i.e., his expected payoff  .14 

Second case: Let us now compare the above equilibrium payoffs with those bidder i could obtain 
by deviating towards a bid that shades his valuation, i.e., . In this case, we can also 

identify three cases emerging (see figure 10), depending on the ranking between bidder i's bid, 
, and the highest competing bid, . 

 

  
Fig 10. Cases arising when . 
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a) If his bid lies below the highest competing bid, i.e., , then bidder i loses the 

auction, obtaining a zero payoff. 

b) If his bid lies above the highest competing bid, i.e., , then bidder i wins the 

auction, obtaining a net payoff of . 

c) If, instead, his bid coincides with the highest competing bid, i.e., , then a tie 

occurs, and the object is randomly assigned, yielding an expected payoff of . 

Hence, we just showed that bidder i obtains the same payoff submitting a bid that coincides 
with his privately observed valuation for the object , as in the First case) and shading his 

bid , as described in teh Second case). Therefore, he does not have incentives to conceal 

his bid, since his payoff would not improve from doing so. 
 
Third case: Let us finally examine bidder i's equilibrium payoff from submitting a bid above his 
valuation, i.e., . In this case, three cases also arise (see figure 11). 

 

  
Fig 11. Cases arising when . 

 
a) If his bid lies below the highest competing bid, i.e., , then bidder i loses the 

auction, obtaining a zero payoff. 
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b) If his bid lies above the highest competing bid, i.e., , then bidder i wins the 

auction. In this scenario, his payoff becomes , which is positive if , or 

negative otherwise. (These two situations are depicted in case 3b of figure 11.) The latter 

case, in which bidder i wins the auction but at a loss (negative expected payoff), did not 

exist in our above analysis of  and , since players did not submit 

bids above their own valuation. Intuitively, the possibility of a negative payoff arises 

because bidder i's valuation can lie below the second-highest bid, as figure 11 illustrates, 

where . 

c) If, instead, his bid coincides with the highest competing bid, i.e., , then a tie 

occurs, and the object is randomly assigned, yielding an expected payoff of . 

Similarly as our above discussion, this expected payoff is positive if , but negative 

otherwise. 

 
Hence, bidder i's payoff from submitting a bid above his valuation either coincides with his 

payoff from submitting his own value for the object, or becomes strictly lower, thus nullifying 
his incentives to deviate from his equilibrium bid of . In other words, there is no 

bidding strategy that provides a strictly higher payoff than  in the SPA, and all 

players bid their own valuation, without shading their bids; a result that differs from the optimal 
bidding function in FPA, where players shade their bids unless N→∞. 
 

Remark. The above equilibrium bidding strategy in the SPA is, importantly, unaffected by 
the number of bidders who participate in the auction, N, or their risk-aversion preferences. In 
particular, our above discussion considered the presence of N bidders, and an increase in their 
number does not emphasize or ameliorate the incentives that every bidder has to submit a bid 
that coincides with his own valuation for the object, . Furthermore, the above results 

remain when bidders evaluate their net payoff, e.g., , according to a concave utility 

function, such as , exhibiting risk aversion. Specifically, for a given value of the 

highest competing bid, , bidder i's expected payoff from submitting a bid  would 

still be weakly larger than from deviating to a bidding strategy above, , or below, 

, his true valuation for the object. 
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Efficiency in auctions 
 
Auctions, and generally allocation mechanism, are characterized as efficient if the bidder 

(or agent) with the highest valuation for the object is indeed the person receiving the object. 
Intuitively, if this property does not hold, the outcome of the auction (i.e., the allocation of the 
object) would open the door to negotiations and arbitrage among the winning bidder —who, 
despite obtaining the object, is not the player who assigns the highest value to it— and other 
bidder/s with higher valuations who would like to buy the object from him. In other words, the 
auction's outcome would still allow for negotiations that are beneficial for all parties involved, 
i.e., usually referred as Pareto improving negotiations, thus suggesting that the initial allocation 
was not efficient. 

According to this criterion, both the FPA and the SPA are efficient, since the bidder with 
the highest valuation submits the highest bid, and the object is ultimately assigned to the player 
who submits the highest bid. Other auction formats, such as the Chinese (or lottery) auction 
described in the Introduction, are not necessarily efficient, since they may assign the object to an 
individual who did not submit the highest valuation for the object. In particular, recall that the 
probability of winning the object in this auction is a ratio of the bid you submit relative to the 
sum of all players' bids. Hence, a bidder with a low valuation for the object, and who submits the 
lowest bid, e.g., $1, can still win the auction. Alternatively, the person that assigns the highest 
value to the object, despite submitting the highest bid, might not end up receiving the object for 
sale. Therefore, for an auction to satisfy efficiency, bids must be increasing in a player's 
valuation, and the probability of winning the auction must be one (100%) if a bidder submits the 
highest bid. 

 

COMMON-VALUE AUCTIONS 
 
The auction formats considered above assume that each bidders privately observes his 

own valuation for the object, and this valuation is distributed according to a distribution function 
F(v), e.g., a uniform distribution, implying that two bidders are unlikely to assign the same value 
to the object for sale. However, in some auctions, such as the government sale of oil leases, 
bidders (oil companies) might assign the same monetary value to the object (common value), i.e., 
the profits they would obtain from exploiting the oil reservoir. Bidders are, nonetheless, unable 
to precisely observe the value of this oil reservoir but, instead, gather estimates of its value. In 
the oil lease example, firms cannot accurately observe the exact volume of oil in the reservoir, or 
how difficult it will be to extract, but can accumulate different estimates from their own 
engineers, or from other consulting companies, that inform the firm about the potential profits to 
be made from the oil lease. Such estimates are, nonetheless, imprecise, and only allow the firm to 
assign a value to the object (profits from the oil lease) within a relatively narrow range, e.g., 

 in millions of dollars. Consider that oil company A hires a consultant, and 

gets a signal (a report), s, as follows 
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and, hence, the signal is above the true value to the oil lease with 50% probability, or below its 
value otherwise. We can alternatively represent this information by examining the conditional 
probability that the true value of the oil lease is v, given that the firm receives a signal s, is 
 

 
 
since the true value of the lease is overestimated when  and the signal 

is above v; and underestimated when  and the signal lies below v. 

Notice that, if company A was not participating in the auction, then the expected value of the oil 
lease would be 
 

 
 
implying that the firm would pay for the oil lease a price , making a positive expected 

profit. But, what if the oil company participates in a FPA for the oil lease against another 
company B? In this context, every firm uses a different consultant, i.e., can receive different 
signals, but does not know whether their consultant systematically over- or under-estimates the 
true value of the oil lease. In particular, consider that every firm receives a signal s from their 
consultant. Observing its own signal, but not observing the signal received by the other firm, 
every firm i={A,B} submits a bid from the set {1,2,…,20}, where the upper bound of this 
interval represents the maximum value of the oil lease according to all estimates. 

We will next show that slightly shading your bid, e.g., submitting , cannot be 

optimal for any firm. At first glance, however, such a bidding strategy seems sensitive: the firm 
bid is increasing in the signal it receives and, in addition, its bid is below the signal, , 

entailing that, if the true value of the oil lease was s, the firm would obtain a positive expected 
profit from winning. In order to show that bid  cannot be optimal, consider that firm A 

receives a signal , and thus submits a bid . Given such a signal, 

the true value of the oil lease is 
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Specifically, when the true value of the oil lease is v=12, firm A receives a signal of  (an 

underestimation of the true valuation, 12), while firm B receives a signal of  (an 

overestimation). In this setting, firms bid  and  and, thus, 

firm A loses the auction. If, in contrast, the true value of the lease is v =8, firm A receives a 
signal of  (an overestimation of the true valuation, 8), while firm B receives a signal 

 (an underestimation). In this context, firms bid , and , 

and firm A wins the auction. In particular, firm A's expected profit from participating in this 
auction is 
 

	
 
which is negative! This is the so-called “winner's curse” in common-value auctions. In particular, 
the fact that a bidder wins the auction just means that he probably received an overestimated 
signal of the true value of the object for sale, as firm A receiving signal  in the above 

example. Therefore, in order to avoid the winner's curse, participants in common-value auctions 
must significantly shade their bid, e.g., b=s-2 or less, in order to consider the possibility that the 
signals they receive are overestimating the true value of the object.15 
 

The winner’s curse in practice. Despite the straightforward intuition behind this result, 
the winner's curse has been empirically observed in several controlled experiments. A common 
example is that of subjects in an experimental lab, where they are asked to submit bids in a 
common-value auction where a jar of nickels is being sold. Consider that the instructor of one of 
your courses comes to class with a jar plenty of nickels. The monetary value you assign to the jar 
coincides with that of your classmates, i.e., its value is common, but none of you can accurately 
estimate the number of nickels in the jar, since you can only gather some imprecise information 
about its true value by looking at the jar for a few seconds. In these experiments, it is usual to 
find that the winner ends up submitting a bid a monetary amount beyond the jar’s true value, i.e., 
the winner's curse emerges. (For some experimental evidence on the winner's curse see, for 
instance, Thaler (1988).) 

More surprisingly, the winner's curse has also been shown to arise among oil company 
executives. Hendricks et al. (2003) analyze the bidding strategies of companies, such as Texaco, 
Exxon, an British Petroleum, when competing for the mineral rights to properties 3-200 miles 
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off-shore and initially owned by the U.S. government. Generally, executives did not 
systematically fall prey of the winner's curse, since their bids were about one third of the true 
value of the oil lease. As a consequence, if their bids resulted in their company winning the 
auction, their expected profits would become positive. Texaco executives, however, not only fell 
prey of the winner's curse, but submitted bids above the estimated value of the oil lease. Such a 
high bid, if winning, would have resulted in negative expected profits. One cannot help but 
wonder if Texaco executives were enrolled in a remedial course on auction theory. 
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3. In particular, the Praetorian Guard, after killing Pertinax, the emperor, announced that the highest bidder 

could claim the Empire. Didius Julianus was the winner, becoming the emperor for two short months, after 
which he was beheaded. 

4. Varian's (2010) textbook provides a more complete introduction to auctions and mechanism design but, 
unlike this paper, it does not focus on equilibrium bidding strategies. 

5. This auction format is used by the internet seller QuiBids.com. For instance, if you participate in the sale of 
a new iPad, and you submit a low bid of $25 but some other bidder wins by submitting a higher bid, you 
will still see your $25 bid withdrawn from your QuiBids account. 

6. Auctions are, hence, regarded as an example of Bayesian game. 
7. Note that this assumption does not imply that bidder j does not assign a valuation  larger than one to the 

object but, instead, that his range of valuations, e.g., from 0 to , can be normalized to the interval [0,1]. 

8. For more references about probability distributions and its properties, see textbooks on Statistics for 
Economists, such as Anderson et al (2009), McClave et al (2010), and Keller (2011). For a more rigorous 
treatment, see Mittlehammer (1996). 

9. Upon loosing, bidders do not obtain any object and, in this auction, do not have to pay any monetary 
amount, thus implying a zero payoff. 

10. Recall that, if a given random variable y is distributed according to a uniform distribution function , 

the probability that the value of y lies below a certain cutoff c, is exactly c, i.e., . 

11. For standard references on calculus applied to Economics and Business, see Klein (2001), and Wainwright 
and Chiang (2004). 

12. An example you have probably encountered in intermediate microeconomics courses includes  

since . As a practice, note that the Arrow-Pratt coefficient of absolute risk aversion 

 for this utility function yields , confirming that, when , the coefficient of risk 

aversion becomes zero, but when , the coefficient is positive. 

13. Intuitively, expression  just finds the highest bid among all bidders different from bidder 

. 
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14. Note that, more generally, if  bidders coincide in submitting the highest bid, their expected payoff 

becomes . 

15. It can be formally shown that, in the case of N=2 bidders, the optimal bidding function is , 

where  denotes the signal that bidder i receives. More generally, for N bidders, bidder i's optimal bid 

becomes . For more details, see Harrington (2009), pp. 321-23. 
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