

ASIAN JOURNAL OF BIOMEDICAL & PHARMACEUTICAL SCIENCES

RESEARCH ARTICLE

Analytical Method Devlopment and Validation for Estimation of Drotaverin Hcl in Bulk and Tablet Formulation

Prabhu Padmavathi P, Paramita Das, Panara Krunal, E.V.S.Subrahmanyam. Department Of Quality Assurance, Srinivas College of Pharmacy, Mangalore, Karnataka, India.

ABSTRACT

The present study was aimed to develop and validates for the analysis of Drotaverine HCl in bulk and tablet formulation. Drotaverine HCl in presence of acidic medium reacts with excess amount of potassium bromide bromate with crystal violet and oxidizes crystal violet. It shows the absorbance at 590nm. The Beer's law was obeyed in the concentration of 10-60mcg/ml. The method was validated for linearity, accuracy, precision and ruggedness. Proposed method was Statistically validated by recovery studies.

Keyword: Drotaverine hydrochloride, Potassium bromide bromate, Crystal violet, Beer's law.

1. INTRODUCTION:

Drotaverine Hydrochloride (1-[(3, 4-diethoxyphenyl)methylene]-6, 7-diethoxy-1, 2, 3, 4-

Tetrahydroisoquinoline¹ and molecular formula $C_{24}H_{31}NO_4$, structure is related to papaverine. It is a novel non anticholinergic smooth muscle antispasmodic which act by inhibiting phospodiesterase -4 (PDE-4) selective for smooth muscle. It is widely used to treat renal cholic and useful in helping to accelerate labor. Drotaverine may also have minor allosteric calcium channel blocking properties. But Drotaverine is not an official drug. A number of methods like spectrophotometry², HPLC^{3, 4}, RP-HPLC^{5, 6}, HPTLC⁷ have been reported in literature for the determination of Drotaverine. The present work is to

develop, simple, precise, and accurate colorimetric method for determination of Drotaverine HCl in tablet dosage form and validated^{8, 9} as per ICH¹⁰ guidelines.

2. EXPERIMENTAL:

Instrument: The analysis was performed by Jasco V-630 series with 1cm matched glass cuvettes were used.

3. MATERIALS AND METHODS

All materials used were of AR grade and double distilled water was used throughout the work.

Drotaverine Hydrochloride was kindly provided by Indoco Remedies. Potassium bromide bromate and crystal violet were purchased from Merck Chemical, India. Doverin

Page /

Prabhu Padmavathi P et al.: Asian Journal of Biomedical and Pharmaceutical Sciences; 3(22) 2013, 75-78.

40mg tablets (Intas Laboratories Pvt Ltd) were obtained from commercial source in the local market.

3.1 Standard Stock Solution: Stock solution of 1mg/ml was prepared by dissolving 100mg of drug in 100ml of methanol. For working solution 10ml was pipette from standard stock solution into 100ml calibrated volumetric [–] flask and made up the volume with methanol to get – concentration of 100mcg/ml.

3.2 Procedure: Six different aliquots were taken from _working standard stock solution diluted with methanol and 1.2ml of 330mcg/ml. Potassium bromide bromate reagent was added(kept for 15mins) to prepare series of concentration from 10-60mcg/ml. Then 0.2ml of crystal violet was added to each 10ml volumetric flask. The absorbance of the resulting solution was measured at 590nm.

3.3 Analysis of marketed formulation: 20 tablets of Doverin (marketed product) containing 40mg Drotaverine was obtained for all analytical study. Powder equivalent to 100mg Drotaverine of was weighed accurately and transferred into 100 ml volumetric flask; volume was made by methanol to give concentration of 1000mcg/ml (stock solution A). From the above Stock solution A, 1ml was pipetted out and added to a 100ml volumetric flask. (Stock solution B).From this solution 2ml was pipette out into 10ml volumetric flask to this 1.2ml of 330mcg/ml Potassium bromide bromate reagent and 0.5ml 2M HCl were added and kept aside for 15mins to allow complete reaction. After 15mins 0.2ml of 0.025% crystal violet added volume made up to 10ml with methanol. Table no.1

Formulatio n	Actual concentration of Drotaverine hydrochloride(µg/ml)	Amount obtained of Drotaverine hydrochlorid e (µg/ml)	% Drotaverine hydrochlorid e	
tablet	15 μg/ml	14.563 µg/ml	97.07%	

Table no .1. Assay Results of Marketed Formulation 4. VALIDATION

4.1 Linearity: Linearity was determined over the range of 10 to 60μg/ml. Six 10ml volumetric flasks were taken. Then 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ml working standard solution of Drotaverine Hydrochloride was added. 1.2 ml `of 330μg/ml Potassium bromide bromate reagent and 0.5ml of 2M HCL were added, kept for 15 minutes. 0.2ml of 0.025% crystal violet was added and made up the volume with methanol. Absorbance was taken at 590 nm. Table no 2. Figure no.1

Sr. no	Volume of working standard of drug (ml)	Concentration in µg/ml	Absorbance at 590nm Mean ± S.D. (n=6)
1	1.0	10	0.141±0.000980
2	2.0	20	0.2763±0.005444
3	3.0	30	0.4153±0.000696
4	4.0	40	0.5545±0.000605
5	5.0	50	0.6819±0.000705
6	6.0	60	0.8173±0.005157

Table no.2 Linearity for Drotaverine hydrochloride

Figure no.1|Standard curve for Drotaverine Hydrochloride

4.2 Accuracy: The accuracy of the methods was determined by calculating % recovery of Drotaverine Hydrochloride by standard addition method. Known volumes of standard solutions of Drotaverine Hydrochloride were taken for recovery studies in 3 different levels 80, 100, 120% and recovery study was carried out. Table no.3

Amt. of sample Drotaverin e hydrochlori de µg/ml	Amt. of Pure drug Drotaverin e hydrochlori de %	Amt. of Pure drug Drotaverin e hydrochlori de μg/ml	Amt. of drug recovered Drotaverin e hydrochlori de μg/ml	Mean % Recovery + SD
20	80	16	15.9337	99.58±0.25 77
20	100	20	19.7327	98.65±0.13 05
20	120	24	23.6813	98.66±0.24 78

Table.3 Accuracy data for Drotaverine hydrochloride at 590 nm 4.3 Method precision: The precision of the methods was checked by repeated measurement of the absorbance of standard solutions (n = 6) of 10 μ g/ml without changing the parameters for the method. The repeatability was

Page / (

Prabhu Padmavathi P <i>et al</i> .: Asian	Journal of Biomedical and Pharmaceutical Sciences;	3(22) 2013, 75-78.
---	--	--------------------

expressed (RSD) table	in te	rms of	relativ	e stanc	lard o	deviation	2 10	9.85	98.5±0. 3	9.8566 9 1	8.566±0.208
Concentrat	10µg/ ml	20µg/ ml	30µg/ ml	40µg/ ml	50µg/ ml	60µg/ ml	Table 6: Rugg 4.6 Reprod	edness results for D ucibility: The ab	rotaverin sorbanc	e hydrochloride e readings o ory using diff	e at 605 nm f 10μg/ ml erent
Absorbanc e	0.1413	0.2768	0.4142	0.5554	0.6814	4 0.8145	Spectropho	ptometer by an	other a	nalyst and	the %RSD
	0.1413	0.2794	0.4157	0.5548	0.6815	5 0.815	values obta	ined to verify the	eir repro	oducibility. Ta	able no.7
	0.1415	0.2795	0.4156	0.5537	0.682	0.8156	Concentrati	In always and 1	0/ DCD	lu atur un aut 1	0/000
	0.1425	0.2789	0.4149	0.5549	0.6814	4 0.8163	on	Instrument 1	%KSD	Instrument 1	%KSD
	0.1408	0.2781	0.4153	0.5541	0.6826	5 0.8149	(µg/ml)				
	0.1397	0.2779	0.4162	0.5545	0.6829	9 0.8161	5	0.12806±0.0002	0.168	0.128167±0.0	0.136
Mean.	0.1410 2	0.2784 3	0.4153 2	0.5545 7	0.6819 7	9 0.8154	Table no 7: Ro Different Inst	eproducibility data f rument at 605 nm	or Drotav	verine hydrochlo	oride with
Std. Dev	0.0009	0.0010	0.0007	0.0006	0.0006	6 0.0007	4.7 Limit o	of Detection and	l Limit	of Quantific	ation: The
	8	3		1	5	2	limit of det	tection (LOD) an	d limit	of quantifica	tion (LOQ)
RSD	0.0069	0.0036	0.0045	0.0011	0.0025	5 0.0008	of the drug	were derived by	[,] calcula	ting the sign	al-to-noise
	5	9	8		7	8	(i.e. 3.3 for	LOD and 10 for L	.OQ) rat	io using follo	wing
%RSD	0.695	0.369	0.458	0.11	0.257	0.088	4.8 equatio	ons designated b	y ICH gu	ideline:	

Table.4: Repeatability data for Drotaverine hydrochloride at 590 nm **4.4 Intermediate precision:** The intraday and interday precision of the proposed methods were performed by analyzing the corresponding responses three times on the same day and on three different days over a period of one week for three different concentrations of standard solutions of Drotaverine Hydrochloride ($10, 20, 30 \mu g/ml$). The results were reported in terms of relative standard deviation (RSD). Table no.5

Seri al No.	Concentrati on (µg/ml)	Inter-day Precision		Intra-day Precision		
		Mean ± S.D	%RS	Mean ± S.D	%RS	
			D		D	
1	5	0.1282±0.000	0.47	0.1278±0.0007	0.58	
		60	0	51	6	
2	10	0.2378±	0.12	0.2371±0.0023	0.85	
		0.0003	6	71	6	
3	15	0.3245 ±	0.29	0.3239±0.0009	0.27	
		0.000945	1		7	

Table.5: Intermediate Precision for Drotaverine hydrochloride at 605 nm

4.5 Ruggedness: To establish ruggedness of the proposed method, assays for two different concentrations of Drotaverine Hydrochloride were performed by two different analysts. The results of assays were represented as % Recovery with SD and % RSD showing the ruggedness of the proposed method. Table no.6

Seria I No	Concentratio n (µg/ml)	Analyst I		Analyst II		
		Amoun t found (μg)	(%) Recover y ± SD	Amoun t found (μg)	(%) Recovery ± SD	
1	5	4.92	98.4± 0.8	4.94	98.8±0.4	

LOD = 3.3 X σ/S and LOQ = 10 X σ/S

Where, σ = the standard deviation of the response, S = slope of the calibration curve.

4.9 Result and Discussion: For validation of analytical methods, were done as per ICH guidelines. The linearity was observed in the concentration range of 10-60mcg/ml .Marketed formulation was analyzed and amount of drug determined by proposed method ranges 98.23%. The % recovery ranges from 0.695-0.088 for Drotaverine.

Estimation of Drotaverine was based on complex with Potassium bromide bromate and the unreacted react with crystal violet, remaining molecule of crystal violet indirectly indicate the amount of drug present.

5. ACKNOWLEDGEMENT:

The Author's thank to INDOCO Remedies, Goa for providing gift samples of Drotaverine and A.SHAMA RAO foundation for providing facilities to carry out this work.

6. REFERENCES

1. www.rxlist.com

2. Vikram GM, Dipali DT, Kunal DI, Amruta SB, Vishnu PC*, Bhanudas SK - spectrophotometric determination of Drotaverine and aceclofenac in combined tablet dosage form by ratio derivative spectroscopy and area under curve (auk) spectrophotometric methods, International Journal of Pharmaceutical Sciences Review and Research. Article 023, Vol. 3(1), 2010; P. 111-114.

3. Samantha A. and Thengungal K.R. - Stability indicating HPLC method for simultaneous determination of Drotaverine and aceclofenac, International Journal of Pharmacy and Pharmaceutical Sciences. Vol. 3(1), 2011, P. 245-250.

4. Prasad P.D., Sanjay B.B., Suvarna B. and Ashok M.B. - High Performance Liquid Chromatographic Estimation of Drotaverine Hydrochloride and Mefenamic Acid in Human Plasma, Iranian Journal of Pharmaceutical Research Vol.8 (3), 2009, P. 209-215.

5. Jyotesh R.J., Dinesh R.S., Shailesh A.S., Renu S.C. - RP-HPLC method for simultaneous estimation of Drotaverine hydrochloride and Aceclofenac in their combined tablet dosage form, Der Pharma Chemica, Vol.3(4), 2011, P.245-252.

© Asian Journal of Biomedical and Pharmaceutical Sciences, all rights reserved.

Prabhu Padmavathi P et al.: Asian Journal of Biomedical and Pharmaceutical Sciences; 3(22) 2013, 75-78.

6. Determination of Mefenamic Acid and Drotaverine HCl Combined Tablet Dosage Form, International Journal of Pharmaceutical Sciences, Vol.3 (1), 2011, P. 115-117.

7. Charde M.S., Kundu R.A., Ghante M.H., Chakole R.D., - Simultaneous estimation of Drotaverine HCl and nimesulide in pharmaceuticals by high performance thin layer chromatographic method, International Journal of Phytopharmacy Vol. 2 (2), P. 2012, 56-60.

8. ICH, Q2A Text on validation of analytical procedures, Oct, 1994

9. ICH, Q3B Validation of analytical procedures: methodology, Nov, 1996.

10. International Conference on Harmonization, Guidance for industry in; Q2B Validation on Analytical Procedures: Methodology. Switzerland 1996; P. 01-08.

Conflict of Interest: None Declared

Cite this article as:

Prabhu Padmavathi P, Paramita Das, Panara Krunal, E.V.S.Subrahmanyam. Analytical Method Devlopment and Validation for Estimation of Drotaverin Hcl in Bulkand Tablet Formulation. Asian Journal of Biomedical and Pharmaceutical Sciences, 2013, 3: (22), 75-78.

$$P_{age}78$$