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Abstract

Tungsten (VI) oxide (or tungsten trioxide) (WO3, <100 nm particle size) nanoparticles (NPs) are used for
many purposes including production of electrochromic windows, or smart windows, x-ray screen and
gas sensors in everyday life. However, their carcinogenicity and genotoxicity have not been sufficiently
evaluated. Therefore, the genotoxic potential of WO3 nanoparticle was examined in cultured human
lymphocytes by the use of the micronucleus (MN) test and the comet (SCGE) assay. Freshly isolated
human lymphocytes were exposed to WO3 nanoparticle at concentrations ranging from 0 to 500 μM for
72 hours at 37°C. Our results indicated that 400 and 500 μM of WO3 nanoparticle treatment caused
slight increases of the MN frequencies in cultured human lymphocytes. Likewise, WO3 nanoparticle (at
concentrations above 200 μM) led to increases of DNA damage (estimated with the comet assay) in
human lymphocytes. The observed alterations in the MN and the comet assay parameters revealed that
WO3 nanoparticles have genotoxic potential and could pose environmental and human health risk.
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Introduction
Nanoparticles (NPs) are identified as particles with diameters
under 100 nm, are unique in that their electronic, chemical, and
physical properties enable many promising technical and
medicinal applications [1,2]. Thanks to their unique features,
NPs have been the focus of much research such as in industrial
applications, environmental toxicity studies and human health
impacts. Various industrial NPs are made from titanium oxide,
silver, gold, cadmium selenite, other carbon NPs, cerium oxide
and hydroxyapatite NPs [3-6]. Together with the fast
development of nanotechnology today, NPs are used for
various biomedical applications such as targeted delivery/
imaging, hyperthermia, cell therapy and stem cell tracking
[7-14]. In recent years, many efforts were made to investigate
the toxicity of micro sized natural and man-made mutagens to
human life and the ability of therapeutic substances to reduce

the toxicity of these chemicals [15-20]. But the toxic effects of
NPs were not fully detailed except for some inorganic and
organic NPs. In fact, the most recent report indicated that there
was a lack of systematic assessment of the DNA damaging and
carcinogenic potential of NPs in spite of their extensive use in
nanotechnological applications. People are exposed to NPs
from various sources and in many pathways, including
inhalation, dermal absorption, eye contact and oral ingestion
[21,22]. Therefore, the evaluation of NPs toxicity has become
very important for public health and the environment [23-25].

Tungsten trioxide contains oxygen and the transition metal
tungsten. It is gained as an intermediate in the recovery of
tungsten from its minerals. To produce tungsten products
tungsten ores are treated with alkalis. Tungsten trioxide can be
prepared in several different ways. Scheelite (CaWO4) is
allowed to react with HCl to produce tungstic acid, which
decomposes to WO3 and water at high temperatures. Another
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common way to synthesize WO3 is by calcination of
ammonium paratungstate (APT) under oxidizing conditions.
There are many applications of the WO3 in everyday life. It is
used in industry to manufacture tungstates for fireproofing
fabrics, for x-ray screen, in gas sensors, automobile glass and
as a pigment in ceramics and paints because of its rich yellow
color [26-30]. In recent years, WO3 has been employed in
biomedical applications as an endovascular coil, endovascular
catheter and bone cement [31-33]. Although tungsten had been
considered a relatively inert and toxicologically safe material,
recent research findings have raised concerns about possible
deleterious health effects after acute and chronic exposure to
this metal [34, 35]. It was reported that soluble tungsten
compounds were absorbed after oral exposure both in humans
and in laboratory rats. It has been shown that the embedded
tungsten alloy pellets caused metastatic tumors in rats.
Tungsten was found to accumulate in several organs and/or
tissues such as kidneys, liver, ovaries, prostate, pancreas, lung,
heart, muscle, spleen and bone following a single oral dose
[36]. In addition, a previous report indicated the potential for
tungsten alloy-induced immunotoxicity [37]. The genotoxic
potential of tungsten and tungsten compounds has not been
extensively assessed [38]. Considering the latest information,
the mutagenic potential of WO3 nanopowder has not been
accurately perused. Thus, in this paper, we thoroughly
investigate the cytotoxic and genotoxic potentials of WO3
nanoparticles in human lymphocytes culture by using the
micronucleus (MN) test and the comet (SCGE) assay.

Materials and Methods

Synthesis of tungsten trioxide nanoparticles
Metal oxide based semiconductors such as SnO2, ZnO, TiO2,
CuO and WO3 etc. have been used in many application areas
[39]. Among these, WO3 is one of the most valuable materials
for electrochromic devices, information displays, smart
windows and rechargeable lithium batteries [40]. WO3 as
transitional metal oxide not only has reversible
electrochromism property and special catalysis property [41];
at one time because of its big surface area, WO3 can be used
excellent solar absorb material and contact material: but also
WO3 belonging to an n-type semiconductor has excellent gas
sensing property [42]. In the recent years, nanopowder WO3
materials have gained much attention due to its surface to
volume ratio, which is much greater than that of coarse-grained
materials [43]. There is a wide range of techniques for
preparation of the powders such as the sol-gel process [44], the
micro emulsion method [42], the inert gas condensation
method and the chemical vapor condensation process [45].
Among these techniques, the sol-gel technique is attractive due
to its easy manipulation of the samples, simplicity, safety, low
cost [46], and easy control of chemical components [47]. The
sol-gel method involves the dispersion of metallic salts in
solutions. The sol is later ‘solidified’ through stages of
stiffening and polymerization to give a gel (gelation) [48]. The
gel so obtained is thoroughly washed with distilled water or
alcohol, filtered, dried and finally heated to high temperatures

to obtain the required material [49]. Therefore, in present
study, WO3 nanopowders were prepared via the sol-gel
process. The experimental construction is shown in Figure 1.
Firstly, nitric acid (HNO3) solution was added drop by drop to
sodium tungstate (Na2WO4.2H2O), so tungstic acid deposit
was formed. Oxalic acid (H2C2O4) and citric acid (C6H8O7)
were used as complex forming agents in the sol solution. The
precipitate obtained from this solution was washed several
times with absolute ethyl alcohol and then dried at 50°C. In
this manner yellow precipitates were formed and WO3 powder
was produced with calcination at 550°C for 3h.

Figure 1: Schematic diagrams of steps involved in obtaining WO3
powders

Lymphocyte cultures
Typically, two or three donors have been used in toxicity
studies [18,19]. In this study, four donors were used to increase
the statistical reliability. Human peripheral blood samples were
drawn from healthy volunteers (age ≤ 30 years), by
venipuncture in heparinized tubes. Leukocytes (lymphocytes
+monocytes) were isolated on a Ficoll-Paque gradient, washed
with Phosphate Buffered Saline (PBS) and resuspended in
Ham’s F10 medium containing 15% foetal calf serum (FCS).
Lymphocytes were stimulated to divide by 2%
phytohaemagglutinin (PHA). Cultures were set up at a
concentration of 0.5 × 106 cells/ml in glass tubes and incubated
at 37°C 24 h after PHA stimulation, WO3 particles were
dispersed in 1-ml cultures. All concentrations were prepared
immediately prior to the application; H2O (10 μl) was used as
metal carrier.
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Genotoxicity testing
Micronucleus assay (MN): Cytochalasin B (6 μg/ml) was
added after 44 h to block cytokinesis, and after a total of 72 h
cells were spread on slides using a cytospin (Shandon, 5 min at
600 rpm). All slides were fixed in 100% methanol (20 min)
and stained with 5% Giemsa in Sörensen buffer (pH 6.8).
Duplicate cultures were analyzed for each dose tested: 1000
cytokinesis-blocked (binucleated) lymphocytes (CBs) were
examined per culture for the presence of one, two or three MN.
In addition, the percentages of binucleated cells (% CB),
polynucleated cells (polyN), metaphases, and mononucleated
cells with MN were recorded. As a measure for cell cycle delay
and/or cytotoxicity, the relative division index (RDI) was used:
RDI=[(CB+2polyN)/n treated sample]/[(CB+2polyN)/n control
sample] × 100. All slides were coded and analyzed with a
Zeiss microscope (1250 × magnification). Statistical
differences between controls and treated samples were
determined with the chi- square (χ²) test. Because Mytomicin C
(MMC) is more effective at lower doses [50], it was used at
10-7M as a positive control.

Comet assay (SCGE): Cell processing was performed as
described by Singh et al., with some modifications [51]. Fully
frosted slides (Richardson Supply, UK) were covered with 1%
normal melting point (NMP) agarose and a coverslip. The
agarose was allowed to solidify at room temperature and
removed by scraping with a coverslip. Then the slides were
covered with 300 μl NMP agarose (0.5%) and a coverslip, and
placed on ice for 10 min to let agarose solidify. After removal
of the coverslip, 5000-50,000 cells (in 10 μl incubation
solution) were mixed with 90 μl of 0.6% low melting point
(LMP) agarose and carefully layered on top, covered with a
coverslip and put on ice to solidify. The coverslips were
removed, and the slides put in cold, freshly made lysing
solution (2.5 M NaCl, 10 mM Tris, 100 mM EDTA disodium
salt and 1% w/v N-lauroylsarcosine, pH 10, supplemented with
10% v/v DMSO and 1% v/v Triton X-100 before use) for at
least 1 h at 4°C. For electrophoresis, the slides were placed in a
horizontal electrophoresis box filled with freshly made alkaline
electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH >12)
for 40 min at 18°C, to allow the DNA to unwind.
Electrophoresis (300 mA, 0.7 V/cm) was performed in the
same buffer for 20 min at 18°C. Slides were removed from the
buffer, the excess alkali was neutralized with 0.4 mM Tris (Ph
7.5), and the slides stored with coverslip in a moist chamber at
4°C until analysis. Ethidium bromide (20 μg/ml) stained nuclei
were analyzed by a computer-guided image analysis system.
Images from a Zeiss fluorescence microscope (300X
magnification) were captured with an air-cooled camera
(Photonic Science) on a frame grabber type DT 2855.
Depending on the quality of the slides, between 40 and 100
non-overlapping images per dose were selected randomly on
the slides. Tail length (TL) of the comet was measured by
defining manually the center and the leading edge of the
nucleus, and the end of the tail. Besides TL, also tail moment
(TM) (TM=TL × fraction of DNA content in the tail) and the
percentage of DNA in the tail (%DNA tail) were assessed. All
data were processed by a Macintosh (Performa 6200 PPC)

computer resulting in, e.g. a box plot presentation to show the
extent and distribution of DNA damage. Statistical differences
between controls and treated samples were determined with the
non-parametric Mann-Whitney U-test.

Results
The effects of WO3 nanoparticle exposure on the frequency of
MN formation are shown in Figure 2. No statistically
significant difference was found between WO3 nanoparticle
applied samples and control group excluding 400 and 500 μM
samples. The higher doses of WO3 nanoparticle (400 and 500
μM) caused increases of MN rates. The results of comet assay
are shown in Figure 3. Comet assay analyses did not show any
statistically significant differences between control and the first
five doses of WO3 nanoparticle (from 10 to 150 μM). On the
contrary, last three doses of WO3 nanoparticle (200, 400 and
500 μM) caused increases of DNA damage.

Figure 2: The frequencies of MNs in human lymphocytes treated with
different concentrations of Tungsten trioxide.

Figure 3: The effects of Tungsten trioxide induced DNA damage
determinated by SCGE assay in lymphocytes.

Discussion
The aim of this laboratory study, was to evaluate the
genotoxicity in the cultured human lymphocyte cells in
response to different concentrations of WO3 NPs. Present
findings indicated that WO3 NPs are a weak mutagen in human
lymphocytes cultures. WO3 nanoparticle induced insignificant
increases of MN frequencies and DNA damage in human
lymphocytes. In fact, the MN assay provides a measure of both
chromosome breakage and chromosome loss or non-
disjunction in clastogenic and aneugenic events, respectively
[52]. Damaged DNA can lead to aneuploidy and/or
chromosomal instability, which is believed to be a major
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contributor to tumor progression [53, 54]. The SCGE assay is a
rapid, simple, visual and sensitive technique for measuring
DNA breakage in individual mammalian cells [55]. In line with
recent findings, there are a few reports on genotoxicity of
tungsten NPs in literature. Turkez et al., reported that WO3
nanoparticle did not cause increase of the incidence of
chromosome aberrations in rat bone marrow cells but led to
increases of MN formation after chronic exposure for 30 days
[56]. On the contrary, another study showed that WO3 NPs did
not induce MN frequency in cultured rat liver cells [6]. Again,
in a study in vitro, WO3 NPs showed positive mutagenic
response in T A1537 and T A98 bacterial strains of Salmonella
typhimurium by using Ames test [57]. Tungsten carbide NPs,
which are used in hard metal industries for the production of
wear resistant and hard tools, induced an increase in the rate of
MN in human keratinocyte cells [58]. The probable genotoxic
effect of NPs is rooted in several causes, namely their ability to
penetrate into living cells and induce free radicals of oxygen
and nitrogen [59], to reach the nuclei [60], to damage the
cytoskeleton [61] and to interact with DNA [62]. The
composition of some nanoclusters include elements that have a
carcinogenic effect, such as tungsten [63]. Finally, the
structures of some NPs are similar to asbestos fibers [64],
which have well-known genotoxic and carcinogenic effects. In
addition, a comparison of the genotoxic effects of nano- and
microparticles of the same compounds verifies that NPs have
higher activity [65].

As a summary, the present findings showed that tungsten oxide
NPs have cytotoxic and a weak genotoxic potential and could
pose human health risk. Further studies are warranted to
investigate the mutagenicity or carcinogenicity of tungsten NPs
in mammalian cells for offering certain cautions and assessing
their risks on humans.
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