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Abstract

The present study quantitatively examined the lamiarcytoarchitecture of functional corti-

cal areas of the cerebrum in Cg2.1 mutant, rolling mouse Nagoya. Brain weights wer not

significantly different between rolling and wild-type mice. Kliver Barrera’s staining of the

cerebral cortex revealed no obvious changes in ctarchitecture of three functional cortical

areas, i.e.,primary motor (M1), somatosensory (SBnd primary visual (V1) areas,in rolling

mice.The cortical thickness and the thickness of ehcortical layers (I-VI) of those three ar-

eas were not significantly different between rollig and wild-type mice.The results suggest

that the cytoarchitectural organization in the fundional cortical areas of the cerebral cortex

is not altered by a Cg2.1 gene mutation.
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Introduction mutated C&.1 channel in pyramidal neurons in the su-

perficial pyramidal layer predicts dysfunction airtico-

Many neuronal processes such as membrane exdjtabilicortical neuronal networks involved in abnormal aytic
and neurotransmitter release are regulated by ucalci Signaling.The present study aimed to clarify whefoe-
influx through the voltage-gated €ahannels, which damental laminar cytoarchitecture of the cereboatex
areclassified intoT-, L-, N-, P/Q- and R-types bgpha- was altered in rolling mice. The thicknessof cattiiam-
cological and electrophysiological characteristidsthe ina was measured in threedifferentcortical areas, pri-
pore-forming @ subunit [1-3]. The P/Q-type €achannel ~mary motor (M1), somatosensory (S1) and primaryalis
has thei;s subunit (Cg2.1),which is produced by alter- areas (V1)inrolling mice.
nating the splicing of an;aubunit gene family [4], an-
dexpresses prominentlythroughout the brain[5]. Materials and Methods

Rolling mouse Nagoya carries a recessive mutagieatif  Animals

the tottering locus (g™) on chromosome 8 [6], whichen- Al experimental procedures were conducted in accor
codes a C&.1 gene [7], and is known as a model for hudance with the guidelines of the Nationallnstitutefs
man C&" channelopathies such as episodic ataxia type Bealth (NIH) for the Care and Use of Laboratory ials
and familial hemiplegic migraine [8]. This mutanbuse (No. 80-23, revised 1996). The Institutional Anin@dre

is characterized by a severe ataxic gait and atmlormand Use Committee of the University of Tokushima ap
hindlimb extension, but does not exhibit epilep8y10]  provedthe procedures, and all efforts were madwitd-

as seen in allelic mutants, tottering, leaner [rid rock- mize the number of animals used and their attensiafat
ermice [12]. Those phenotypes areinvolved in acsg fering. Rolling mice were raised on a C3Hf/Nga back
reduction of C&currents through the P/Q-type chan-ground. Homozygous rolling micdglC/tg®), raised by
nel[7], which is highly expressed in cerebellar Khje intercrossing heterozygous pairs, were readilytitiable
cells not only in normal mice [5] but also in@d mu- by their ataxiclocomotion between postnatal days 10
tants [12;13], including rolling mice [14]. On trether  and14. Wild-type (+/+) mice were used as controls.

hand, theC&.1lis known to be expressed in the cerebral

cortex[5;15], andmediates &anflow in pyramidal cells Tissue preparation

of layersll/lllof the cerebral cortex [15;17].Codsting A total of 5 male rolling and 5 male wild-type miaé 2

the pivotal roles of the G2.1 channel, the presence of themonths of age were used. Animals were perfused with
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0.9% NacCl, followed by 4% paraformaldehyde and 0.1%ons, and small granular neurons; layer IV conthine

picric acid in 0.1 M phosphate buffer, pH. 7.4, endeep

small granular neurons; layer V contained largegiz

anesthesia with sodium pentobarbital (25mg/10g bodpyramidal neurons; and layer VI contained the palgm

weight).Brains were immersed in the same fixatiliee
brains were weighed just after separating them ftioen
spinal cord at the C1 level, and photographs af ther-
sal surfaceswere taken (Fig. 1). Then, the cerelvedire
separated by cutting the cerebellar peduncles,

phic neurons.Such cortical layers were distinglushn
each cortical area, except for layer IV in the Mihich
was too thin to define.While cortical thickness iedr
among each cortical area,no obvious differencehi t

argbrtical organization was obtained between rollangl

weighed. Brains were cytoprotected in 30% sucro$8in wild-type mice. The cortical thickness of each icait
mM phosphate-buffered saline overnight. The spetéme area was quantified, and the results are showigiré-3.
werethen frozen in optimal cutting temperature (QCT Two-way ANOVA revealed significant effects on costi
embedding compound, and sectioned serially in tre ¢ areas F,,3 = 101.83,P<0.001), but not on genotypes

onal plane at 4Qm by aRetratome (REM-700; Yamato (rolling and control mice) and found an interactibe-
Koki Industrial, Osaka, Japan) with a refrigerationit ~ tween these two factors.

(Electro Freeze MC-802A, Yamato Koki Industrial Co.
Ltd.).Sections were stained with Kliver—Barreracade
ing to the protocols of Sheehan and Hrapchak (198(
[18].

Quantitative analysis

Three distinct cortical areas, i.e.,the M1,S1 anid Were-
defined on the KllverBarrera’'sstainedsectionswifen-
ences to the atlas of Paxinos and Franklin (2009 The
thickness oflayers I, 1/, 1V, Vand IV of eachodical
area as shown in Figure 2 was respectively measiged
ing Image J software (National Institutes of Health
Washington, USA) oncaptured images.

rolling

wild-type

Statistical analyses

Brain weights were statistically analyzed by Stuet
test.In order to evaluate mutant- and cortical opgi
related changes in the cortical thickness, two-wa T
ANOVA testwas carried out using genotypes (rollanyg
wild-type), and cortical areas (the M1, S1 and ¥4 )ac-
tors. Furthermore, mutant- and cortical regiontsezla
changes in the thickness of each cortical layeeséatis-
tically analyzed by three-way ANOVA using genotypes
cortical areas and cortical layers (layers I, IJAV, V and
V1) as factors.
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Results

Photographs of the dorsal view of rolling and wige 0
micebrains were shown in Figure 1.No obvious differ
ences in the gross appearance of the brainswetkhete
tween rolling and control mice. The weights of train-
sincluding the olfactory bulb, cerebrum, diencephal
brainstemand cerebellum were not significantly ediht
between the two genotypes examined.

rolling

wild-type

Fig. 1

Figure 1. Gross appearances (upper photographs) and
brain weight(lower histogram) of rolling mouse Na-
goyaand wild-type micResults of brain weight are pre-
sented as the mean +SD. Scale bar = 5mm.

Kliver-Barrera’s stained coronal sections of thfeec-
tional cortical areas, i.e., the M1, S1, and V1srewn in
Figure 2.Six layers of the cortex were definedlirttaee
cortical areas examined: layer | consisted of nglivaith
a few scattered neurons adjacent to the pial sirfager
[I/lll contained small- and medium-sized pyramiahelu-

The thickness of cortical layers was examined iohea
functional cortical area, and the results are shiwrig-
ure 4. Three-way ANOVA revealed significant effeots
cortical areas K,1:6~ 221.52, P<0.001),cortical layers
(Fa116= 683.71,P <0.001), and interactions between
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Figure 2. Kliiver Barrera’s stainedcoronal sectiomsg primary motor (M1), primary sensory (S1) and prary visual
(V1) areas of cerebral cortex of rolling and wilggpe miceThe layer 1V in the M1 was too thin to be distirgdnaible in

either rolling or wild-type mice. Scale bar =1f.
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Figure 3. Histogram showing cortical thickness ofip
mary motor (M1), somatosensory (S1) and primary-vis
ual (V1) areas of cerebrum in rolling and wild-type

mice.Results are presented as the mean + SD. No signifi-

cant effect on the cortical thickness of threeicattareas
between rolling and wild-type mice was noted byedhr
way ANOVA.

Figure 4. Histogram showing thickness of corticahy-
ers I-VI in primary motor (M1), somatosensory (Sahd
primary visual (V1) areas of cerebrum of rolling ah
wild-type mice. The layer IV in the M1 was too thia be
distinguishable in either rolling or wild-type miceRe-
sults are presented as the mean = SD. No signifiefn
fect on the thickness of each layer between roling
wild-type mice was noted in three cortical areashrge-
way ANOVA.
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these two factor§g 16 = 83.35, P<0.001). However,
there were no significant effects on genotypes(rgland

wild-type mice)or on theinteractions of genotypeghw
the other two factors. Thus, the thickness of caltiay-

ers varied among the cortical areas with no diffees

between rolling and wild-type mice.

Discussion
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In our previous studies and those by others, therabal-

ity in Purkinje cell morphology characterized byoaal
torpedoes (or swellings) have been obtained in lzgmo
gous rolling mice [15;18;21;32;33] and other,Z& mu-
tant mice [34]. Such torpedoes are known as neuropa
thological signs characterized by local accumutetiof
malalignedneurofilaments and mitochondria [35-37].
Therefore, expression of the mutatedZ>h channel may
alter the morphology of Purkinje cell axons, whistre-

regions of the central nervous system (CNS)thetmo&e€uronal transmitter release [38]. The,Za channel is

prominent expression of which is observed in theloel-

known to be expressed in the cerebral cortex [6;44dl

lum [5]. Since homozygous rolling mice exhibit moto Mediates CH inflow in pyramidal cells of layers I/l of

deficits characterized by a severe ataxic gait awbr-
mal hindlimb extension [9;10], a number of studiese
been reported in terms oftheir cerebellar abnotieali

the cerebral cortex [12;13]. Therefore, the mutdled.1
channel may be involved in neuronal functions of py
ramidal neurons by impairing axonal transport ilirrg

[15:20:21]. Furthermore, heterozygous rolling micemice.

(tgr°'/+) are involved in functions of the central and pe
ripheral nervous systems: NMDA-mediated signaling i
the hippocampus and nucleus accumbens in short term

learning [22] and age-related emotional changealtieya-
tions in the serotonergic system [25]. Thus, thesence

of the mutated G2.1 channel is involved in functions of “

various regions of the CNS. In the present stuaiyinar
cytoarchitecture of the cerebral cortex revealedhogk-
ness of cortical layers was not altered throughioeitM1,

S1 and V1 in homozygous rolling mice. On the other

hand, the cerebellum is known as the CNS regioh tlui
most prominent expression of 2dl [5], althoughno cy-
toachitectural abnormalities weredetectedthereR;21).
That evidence suggests that the,ZZh gene mutation
does not alter the fundamental laminar organizatiotme
cerebrum as well as the cerebellum, but thatirvslved
in the functions of those CNS regions.

In the present study, the brain weights were nifé¢rdint
between homozygous rolling and wild-type mice. Amu
ber of studies have been reported concerning thghtge
of various CNS regions of homozygous rolling miaed
the reduced weights were marked in specific regioes
the cerebellum and brainstem [28] The reduced edezb

weight of homozygous rolling mice is thought to be

linked with apoptosis of a significant number ofedeel-
lar granule cells [29]. Furthermore, susceptibility the

Ca2.1 gene mutation was heterogeneous among different

Purkinje cell populations in another 2&dl mutant mice,
tottering, which exhibited selective
phosphorylated form of neurofilament heavy chaiMiS
32) immunopositive Purkinje cells [30;31]. In theepent
study, the cortical thickness and the thicknesb@fcorti-
cal layers were not altered throughout the M1, 54 &1
in homozygous rolling mice. The results suggest éxa

pression of the mutated (2al channel is not involved in

the laminar organization and/or neuronal degermrati
the cerebral cortex.
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