## SHORT REPORT

# Synthesis and Evaluation of Antifungal Activity of Benzotriazole Derivatives 

Dabhade P.S.*, Jain N.P.

Department of Pharmaceutical Chemistry, S.N.D. College of Pharmacy, Babhulgaon, Yeola- 423401

Received:
$6^{\text {th }}$ March 2013
Received in revised form:
$8^{\text {th }}$ March 2013
Accepted:
$10^{\text {th }}$ March 2013
Available online
$15^{\text {th }}$ March 2013


Online ISSN 2249-622X
http://www.jbiopharm.com


#### Abstract

The present research work is related to synthesis of different derivatives of benzotriazole at the laboratory scale. By reacting substituted orthochloronitrobenzene with hydrazine hydrate in the presence of sodium carbonate gives substituted 1-hydroxy benzotriazole. Further First series of 1(benzoyloxy) benzotriazole have been synthesized by esterification reaction of 1-hydroxy-bezotriazole with substituted benzoic acid by using dicyclohexylcarbdiimide (DCC) as a catalyst, second series of 1-(benzoyloxy)6 -chloro benzotriazole have been synthesized by esterification reaction of 1-hydroxy-6-chloro benzotriazole with substituted benzoic acid by using dicyclohexylcarbdiimide (DCC) as a catalyst, and third series of 1-(benzoyloxy)-6-nitro benzotriazole have been synthesized by esterification reaction of 1-hydroxy-6-nitro benzotriazole with substituted benzoic acid by using dicyclohexylcarbdiimide (DCC) as a catalyst All the compounds have been evaluated for in-vitro antifungal activity (MIC) against Trichophyton rubrum, Epidermophyton floccosum and Malassazia furfur by using tube dilution method \& activity was compared with Ketoconazole. In the primary screening some of the compounds exhibited appreciable activity. The purity of synthesized compounds was checked by using TLC \& structure of the synthesized compounds is confirmed on the basis of spectral data.


Keywords: Benzotriazole; antifungal, in-vitro antifungal activity.

## 1. INTRODUCTION

The increasing incidence of fungal infection associated with unsatisfactory therapeutic treatment in immunocompromized patients and the emergence of azole-resistant fungal strains have stimulated the search for alternative antifungal drugs with higher potency and broader spectrum of activity against resistant fungal strains along with a greater metabolic stability. From a clinical stand point, candidiasis and aspergillosis are the most common fungal infections affecting immunocompromized individuals [1, 2].
Triazole may be considered as a bioisostere of imidazole which is incorporated into the structures of many antifungal compounds [3]. With the aim of obtaining new antifungal compounds, we synthesized a series of benzotriazole derivatives.

CYP51 is an essential enzyme in the sterol biosynthetic pathway in eukaryotes, where inhibition by azole drugs in fungi leads to a depletion of ergosterol [4]. The key interactions in the active site are these components: (i) the amidine nitrogen atom ( $\mathrm{N}-3$ in the imidazoles, $\mathrm{N}-4$ in the triazoles) to bind to the heme iron of enzyme; (ii) aromatic rings; (iii) the large nonpolar portion of molecule [5].

## 2. MATERIALS AND METHODS

## Chemistry

1-(Benzoyloxy)-(1H-Benzo[d] [1,2,3]triazol-1-yl) derivatives B1-B30 were prepared according to the procedure depicted in Scheme-1. The precursor 1-hydroxy-(1HBenzo[d] [1,2,3]triazol-1-yl) 1, 2 and 3 was prepared according to a previously reported method [6] by reaction of substituted Ortho chloro nitro benzene with hydrazine
hydrate in the presence of sodium carbonate. When 1, 2 and 3 are reacted with different substituted benzoic acid in presence of dicyclohexylcarbdiimide as catalyst
afforded the target compounds B1-B30 in good yield. The substitution data is given in table 1.

| Sr.No. | Code | X | R | R1 | R2 | R3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | B1 | H | H | H | H | H |
| 2 | B2 | H | H | H | $\mathrm{NO}_{2}$ | H |
| 3 | B3 | H | H | $\mathrm{NO}_{2}$ | H | H |
| 4 | B4 | H | Cl | H | H | H |
| 5 | B5 | H | H | H | Cl | H |
| 6 | B6 | H | H | $\mathrm{NO}_{2}$ | H | $\mathrm{NO}_{2}$ |
| 7 | B7 | H | H | $\mathrm{CH}_{3}$ | H | H |
| 8 | B8 | H | $\mathrm{CH}_{3}$ | H | H | H |
| 9 | B9 | H | H | H | $\mathrm{CH}_{3}$ | H |
| 10 | B10 | H | H | H | $\mathrm{OCH}_{3}$ | H |
| 11 | B11 | Cl | H | H | H | H |
| 12 | B12 | Cl | H | H | $\mathrm{NO}_{2}$ | H |
| 13 | B13 | Cl | H | $\mathrm{NO}_{2}$ | H | H |
| 14 | B14 | Cl | Cl | H | H | H |
| 15 | B15 | Cl | H | H | Cl | H |
| 16 | B16 | Cl | H | $\mathrm{NO}_{2}$ | H | $\mathrm{NO}_{2}$ |
| 17 | B17 | Cl | H | $\mathrm{CH}_{3}$ | H | H |
| 18 | B18 | Cl | $\mathrm{CH}_{3}$ | H | H | H |
| 19 | B19 | Cl | H | H | $\mathrm{CH}_{3}$ | H |
| 20 | B20 | Cl | H | H | $\mathrm{OCH}_{3}$ | H |
| 21 | B21 | $\mathrm{NO}_{2}$ | H | H | H | H |
| 22 | B22 | $\mathrm{NO}_{2}$ | H | H | $\mathrm{NO}_{2}$ | H |
| 23 | B23 | $\mathrm{NO}_{2}$ | H | $\mathrm{NO}_{2}$ | H | H |
| 24 | B24 | $\mathrm{NO}_{2}$ | Cl | H | H | H |
| 25 | B25 | $\mathrm{NO}_{2}$ | H | H | Cl | H |
| 26 | B26 | $\mathrm{NO}_{2}$ | H | $\mathrm{NO}_{2}$ | H | $\mathrm{NO}_{2}$ |
| 27 | B27 | $\mathrm{NO}_{2}$ | H | $\mathrm{CH}_{3}$ | H | H |
| 28 | B28 | $\mathrm{NO}_{2}$ | $\mathrm{CH}_{3}$ | H | H | H |
| 29 | B29 | $\mathrm{NO}_{2}$ | H | H | $\mathrm{CH}_{3}$ | H |
| 30 | B30 | $\mathrm{NO}_{2}$ | H | H | $\mathrm{OCH}_{3}$ | H |

Table No. 1: Substitution data of the compounds (B1-B30)
Melting points of all the synthesized compounds are uncorrected. The purity of synthesized compounds was checked by thin-layer chromatography. The IR spectra have been recorded on FT IR spectrophotometer Shamadzu using Nujol. ${ }^{1} \mathrm{H}$ NMR spectra were scanned at 300 MHz Varian-NMR-Mercury 300 FT NMR spectrophotometer in $\mathrm{CDCl}_{3}$ using TMS as an internal standard. Physicochemical and spectral analysis data is given in table 2. [7, 8]

## General

Procedure for the synthesis of derivatives of 1-hydroxy-(1H-Benzo[d] [1,2,3]triazol-1-yl): Ortho chloro nitro benzene ( $15.75 \mathrm{gm}, 0.1 \mathrm{~mol}$ ), was refluxed with hydrazine hydrate ( $10 \mathrm{gm}, 0.2 \mathrm{~mol}$ ) in ethanol ( 50 ml ) in the presence
of sodium carbonate ( $10.6 \mathrm{gm}, 0.13 \mathrm{~mol}$ ) for 24 hrs . After completion of reaction, mixture was diluted with ice-cold water and acidified with dilute HCl . The precipitated product was filtered. The precipitate was washed with cold water. The product was recrystallized from hot water. The precipitated product was filtered. The precipitate was washed with cold water. The product was recrystallized from hot water. This was obtained as a white solid in $62.96 \%$ yield. $R f=0.72$ (95:5 EtOAc:MeOH); mp 158161oC; IR (KBr) cm-1 3500-3300 (O-H), 1160 (N-O) ;1HNMR ( $300 \mathrm{MHz}, \mathrm{CDCl} 3+(\mathrm{CD} 3) 2 \mathrm{CO}) \delta$ ): $5.34(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-$ 5), $7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7$ ).


Where; $\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2} . \mathrm{R}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$. Scheme 1: The synthetic pathway of compounds B1-B30.

Procedure for the synthesis of derivatives of 1-hydroxy-6-chloro-(1H-Benzo[d] [1,2,3]triazol-1-yl): 2,5-dichloro nitro benzene (19.1gm, 0.1mol), was refluxed with hydrazine hydrate ( $10 \mathrm{gm}, 0.2 \mathrm{~mol}$ ) in ethanol $(50 \mathrm{ml})$ in the presence of sodium carbonate $(10.6 \mathrm{gm}, 0.13 \mathrm{~mol})$ for 24 hrs . After

## Dabhade PS.: Asian Journal of Biomedical and Pharmaceutical Sciences 3(17) 2013, 29-34

completion of reaction, mixture was diluted with ice-cold water and acidified with dilute HCl . The precipitated product was filtered. The precipitate was washed with cold water. The product was recrystallized from hot water. This was obtained as a white solid in $53.25 \%$ yield. $\mathrm{Rf}=$ 0.62 (95:5 EtOAc:MeOH); mp 190-192oC; IR (KBr) cm-1 3500-3300 (O-H), 1160 (N-O) ;1H-NMR ( $300 \mathrm{MHz}, \mathrm{CDCl} 3+$ (CD3)2 CO) $\delta$ ): 2.58 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ ), $7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{Bt}-4)$, $7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{Bt}-5), 7.61(1 \mathrm{H}, \mathrm{s}, \mathrm{Bt}-7)$.
Procedure for the synthesis of derivatives of 1-hydroxy-6-nitro-(1H-Benzo[d] [1,2,3]triazol-1-yl): 2-chloro-1,5dinitro benzene ( $19.1 \mathrm{gm}, 0.1 \mathrm{~mol}$ ), was refluxed with hydrazine hydrate ( $10 \mathrm{gm}, 0.2 \mathrm{~mol}$ ) in ethanol ( 50 ml ) in the
presence of sodium carbonate ( $10.6 \mathrm{gm}, 0.13 \mathrm{~mol}$ ) for 24 hrs . After completion of reaction, mixture was diluted with ice-cold water and acidified with dilute HCl . The precipitated product was filtered. The precipitate was washed with cold water. The product was recrystallized from hot water. This was obtained as a white solid in $53.25 \%$ yield. $R f=0.62$ (95:5 EtOAc:MeOH); mp 190192oC; IR (KBr) cm-1 3500-3300 (O-H), 1580 ( $\mathrm{N}=\mathrm{O}$ ), 1310 ( $\mathrm{N}=\mathrm{O}$ ), 1160 ( $\mathrm{N}-\mathrm{O}$ ) ; $1 \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{CDCl} 3+(\mathrm{CD} 3) 2 \mathrm{CO})$ ס): $2.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{Bt}-4), 7.84(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}, \mathrm{Bt}-5), 7.61(1 \mathrm{H}, \mathrm{s}, \mathrm{Bt}-7)$.

| Sr. <br> No. | Code | Molecular formula | Molecular weight | M.P. ( ${ }^{\circ} \mathrm{c}$ ) | $\mathrm{R}_{\mathrm{f}}$ value | Spectral analysis data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | B1 | $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{3}$ | 239 | 76-78 | $0.76{ }^{1}$ | IR (KBr) cm ${ }^{-1} 1780$ (C=O), $1240(\mathrm{C}-\mathrm{O}), 1600$ (C=C), 1160 (N-O), $730(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.38$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.47$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .12$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 2 | B2 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 284 | 142-145 | $0.81{ }^{2}$ | $\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1800(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1540\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1350\left(\mathrm{C}-\mathrm{NO}_{2}\right), 730(\mathrm{C}-\mathrm{H}) 1250(\mathrm{C}-\mathrm{O}), \\ \left.1160(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.98(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.45 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.42(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.39 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 8.47\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 8.45\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .32 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |
| 3 | B3 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 284 | 148-149 | $0.84{ }^{3}$ | IR ( KBr ) cm ${ }^{-1} 1793$ (C=O), $1632(\mathrm{C}=\mathrm{C}), 1538\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1347\left(\mathrm{C}-\mathrm{NO}_{2}\right), 728(\mathrm{C}-\mathrm{H}) 1246$ (C-O), $\left.1164(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.38$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.82$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 8.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .52$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}$ ). |
| 4 | B4 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 273 | 61-64 | $0.87{ }^{3}$ | IR (KBr) cm ${ }^{-1} 1804$ (C=O), 1628 (C=C), 1592 (C-C), 1251-1229 (C-O), 1105 (N-O), 818 (C$\left.\mathrm{Cl}), 722(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.49$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .07$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}$ ). |
| 5 | B5 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 273 | 127-129 | $0.65{ }^{3}$ | IR ( KBr ) cm ${ }^{-1} 1800$ ( $\mathrm{C}=\mathrm{O}$ ), 1630 ( $\mathrm{C}=\mathrm{C}$ ), 1580 (C-C), 1250-1230 (C-O), 1100 ( $\mathrm{N}-\mathrm{O}$ ), 820 (C$\left.\mathrm{Cl}), 730(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Bt}-4), 7.37$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{Bt}-5), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Bt}-7), 8.07$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.5\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, B e-3^{1}\right), 7.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .7 .94$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 6 | B6 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{~N}_{5}$ | 329 | 140-142 | $0.70^{4}$ | $\begin{gathered} \hline \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1787(\mathrm{C}=\mathrm{O}), 1629(\mathrm{C}=\mathrm{C}), 1541\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1342\left(\mathrm{C}-\mathrm{NO}_{2}\right), 731(\mathrm{C}-\mathrm{H}) 1252(\mathrm{C}-\mathrm{O}), \\ \left.1154(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.52(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Bt}-4), 7.48 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.32(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, \mathrm{Bt}-6), 7.78(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 9.23 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 9.46\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 9.27\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |
| 7 | B7 | $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{3}$ | 253 | 113-115 | $0.65{ }^{4}$ | IR ( KBr ) cm ${ }^{-1} 1800$ (C=O), 1630 (C=C), 1580 (C-C), 1250-1230 (C-O), 1100 ( $\mathrm{N}-\mathrm{O}$ ), 730 (CH). $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11$ $\left.\mathrm{Hz}, \mathrm{Be}-2^{1}\right), 2.10\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-3^{1} \mathrm{CH}_{3}\right), 7.4\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .7 .94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 8 | B8 | $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{3}$ | 253 | 155-158 | $0.97{ }^{3}$ | IR ( KBr ) cm ${ }^{-1} 1795$ (C=O), 1638 (C=C), 1594 (C-C), 1252-1232 (C-O), 1110 ( $\mathrm{N}-\mathrm{O}$ ), 735 (CH). $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 2.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5$ $\left.\mathrm{Hz}, \mathrm{Be}-2^{1} \mathrm{CH}_{3}\right), 7.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 9 | B9 | $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{3}$ | 253 | 206-208 | $0.81{ }^{3}$ | $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1802$ (C=O), 1631 (C=C), 1587 (C-C), 1248-1227 (C-O), 1100 (N-O), 730 (C-H). $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{Bt}-5), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 7.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 2.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.B e-5^{1}\right) \cdot 8.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 10 | B10 | $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{3}$ | 269 | 115-118 | $0.90^{2}$ | IR ( KBr ) cm ${ }^{-1} 1730$ (C=O), 1610 (C=C), 1580 (C-C), 1260 (C-O), 1170 ( $\mathrm{N}-\mathrm{O}$ ), $830(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-$ NMR ( $\left.\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}$, Bt-5), $7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Bt}-6), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 6.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 3.73\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 6.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, \mathrm{Be}-5^{1}\right) .8 .02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 11 | B11 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 273 | 80-83 | $0.80{ }^{5}$ |  |

Dabhade PS.: Asian Journal of Biomedical and Pharmaceutical Sciences 3(17) 2013, 29-34

| 12 | B12 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Cl}$ | 318 | 150-154 | $0.85{ }^{5}$ | IR ( KBr ) $\mathrm{cm}^{-1} 1800$ ( $\mathrm{C}=\mathrm{O}$ ), $1650(\mathrm{C}=\mathrm{C}), 1540\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1350\left(\mathrm{C}-\mathrm{NO}_{2}\right), 810(\mathrm{C}-\mathrm{Cl}), 730(\mathrm{C}-\mathrm{H})$ $\left.1250(\mathrm{C}-\mathrm{O}), 1160(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}$, Bt-4), $7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 8.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 8.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-$ $6^{1}$ ). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | B13 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Cl}$ | 318 | 160-162 | $0.78{ }^{3}$ | IR (KBr) cm ${ }^{-1} 1796$ ( $\mathrm{C}=\mathrm{O}$ ), 1653 ( $\mathrm{C}=\mathrm{C}$ ), $1539\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1356\left(\mathrm{C}-\mathrm{NO}_{2}\right), 813(\mathrm{C}-\mathrm{Cl}), 731(\mathrm{C}-\mathrm{H})$ 1248 (C-O), $\left.1161(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}$, Bt-4), $7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 8.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-$ $6^{1}$ ). |
| 14 | B14 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}_{2}$ | 307 | 80-83 | $0.90{ }^{5}$ | IR (KBr) cm ${ }^{-1} 1781$ (C=O), 1618 (C=C), 1574 (C-C), 1254-1231 (C-O), 1106 ( $\mathrm{N}-\mathrm{O}$ ), 816 (C$\left.\mathrm{Cl}), 723(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.54$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .07\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 15 | B15 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}_{2}$ | 307 | 135-138 | $0.75{ }^{5}$ | $\begin{gathered} \text { IR (KBr) } \mathrm{cm}^{-1} 1800(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}), 1580(\mathrm{C}-\mathrm{C}), 1250-1230(\mathrm{C}-\mathrm{O}), 1100(\mathrm{~N}-\mathrm{O}), 820(\mathrm{C}- \\ \left.\mathrm{Cl}), 730(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+(\mathrm{CD})_{2} \mathrm{CO}\right) \delta\right): 7.88(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Bt}-4), 7.37 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, \mathrm{Bt}-5), 7.88(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, \mathrm{Bt}-7), 8.07\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.5 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.46\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, B e-5^{1}\right) .7 .94\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, \mathrm{Be}^{1} 6^{1}\right) . \end{gathered}$ |
| 16 | B16 | $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~N}_{5} \mathrm{Cl}$ | 363 | 151-153 | $0.78{ }^{5}$ | IR ( KBr ) cm ${ }^{-1} 1811$ ( $\mathrm{C}=\mathrm{O}$ ), $1662(\mathrm{C}=\mathrm{C}), 1543\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1349\left(\mathrm{C}-\mathrm{NO}_{2}\right), 812(\mathrm{C}-\mathrm{Cl}), 741(\mathrm{C}-\mathrm{H})$ $\left.1261(\mathrm{C}-\mathrm{O}), 1146(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}$, Bt-4), $7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 9.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 9.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 9.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 17 | B17 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 287 | 146-150 | $0.73{ }^{4}$ | $\begin{gathered} \text { IR (KBr) cm }{ }^{-1} 1786(\mathrm{C}=\mathrm{O}), 1624(\mathrm{C}=\mathrm{C}), 1579(\mathrm{C}-\mathrm{C}), 1247-1228(\mathrm{C}-\mathrm{O}), 1104(\mathrm{~N}-\mathrm{O}), 842(\mathrm{C}- \\ \left.\mathrm{Cl}), 728(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 8\right): 7.91(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.37 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.98(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.84\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 2.10 \\ \left(3 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, \mathrm{Be}^{1} 3^{1} \mathrm{CH}_{3}\right), 7.4\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, B e-5^{1}\right) . \\ 7.94\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |
| 18 | B18 | $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 287 | 190-192 | $0.76{ }^{4}$ | IR (KBr) cm ${ }^{-1} 1798$ (C=O), 1645 (C=C), 1591 (C-C), 1255-1240 (C-O), 1118 ( $\mathrm{N}-\mathrm{O}$ ), 851 (C$\left.\mathrm{Cl}), 726(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.35$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 2.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-2^{1} \mathrm{CH}_{3}\right)$, $7.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right)$. $8.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 19 | B19 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}$ | 287 | 215-217 | $0.85{ }^{3}$ | IR (KBr) cm ${ }^{-1} 1800$ (C=O), 1630 (C=C), 1580 (C-C), 1250-1230 (C-O), 1100 (N-O), 848 (C$\left.\mathrm{Cl}), 730(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.45$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.27$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 2.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 7.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right)$. $8.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 20 | B20 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Cl}$ | 303 | 80-83 | $0.84{ }^{1}$ | $\begin{gathered} \text { IR (KBr) } \mathrm{cm}^{-1} 1780(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1600(\mathrm{C}-\mathrm{C}), 1270-1250(\mathrm{C}-\mathrm{O}), 1180-1150(\mathrm{~N}-\mathrm{O}), \\ \left.850(\mathrm{C}-\mathrm{Cl}) .^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 7.98(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 7.45 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 7.93(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.02\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 6.98 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 3.73\left(3 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 6.98\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) . \\ 8.02\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |
| 21 | B21 | $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 284 | 153-155 | $0.88{ }^{2}$ | IR ( KBr ) cm ${ }^{-1} 1785(\mathrm{C}=\mathrm{O}), 1648(\mathrm{C}=\mathrm{C}), 1542\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1348\left(\mathrm{C}-\mathrm{NO}_{2}\right), 731(\mathrm{C}-\mathrm{H}) 1252(\mathrm{C}-\mathrm{O})$, $\left.1157(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{Bt}-4), 8.38$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{Bt}-5), 8.91(1 \mathrm{H}, \mathrm{s}, \mathrm{Bt}-7), 8.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $\left.\mathrm{Hz}, \mathrm{Be}-3^{1}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2$ $\left.\mathrm{Hz}, \mathrm{Be}-6^{1}\right)$. |
| 22 | B22 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{~N}_{5}$ | 329 | 208-210 | $0.91{ }^{3}$ | $\begin{gathered} \text { IR (KBr) cm }{ }^{-1} 1791(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{C}), 1546\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1351\left(\mathrm{C}-\mathrm{NO}_{2}\right), 728(\mathrm{C}-\mathrm{H}) 1244(\mathrm{C}-\mathrm{O}), \\ \left.1146(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.12(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.46 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.88(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.39\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 8.47 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 8.45\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .32\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}^{1}\right) . \end{gathered}$ |
| 23 | B23 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{~N}_{5}$ | 329 | 140-143 | $0.35{ }^{5}$ | $\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1801(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1548\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1355\left(\mathrm{C}-\mathrm{NO}_{2}\right), 734(\mathrm{C}-\mathrm{H}) 1240(\mathrm{C}-\mathrm{O}), \\ \left.1156(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.25(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.42 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.83(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.82\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 8.58 \\ \left.\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Be}^{1}\right)^{1}\right), 7.73\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .52\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |
| 24 | B24 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Cl}$ | 318 | 190-192 | $0.35{ }^{4}$ | IR ( KBr ) cm ${ }^{-1} 1800(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1540\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1350\left(\mathrm{C}-\mathrm{NO}_{2}\right), 810(\mathrm{C}-\mathrm{Cl}), 730(\mathrm{C}-\mathrm{H})$ $\left.1250(\mathrm{C}-\mathrm{O}), 1160(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}$, Bt-4), $8.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-$ $\left.3^{1}\right), 7.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .8 .07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-$ $6^{1}$ ). |
| 25 | B25 | $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Cl}$ | 318 | 228-230 | $0.80{ }^{1}$ | IR (KBr) cm ${ }^{-1} 1788$ ( $\mathrm{C}=\mathrm{O}$ ), 1649 ( $\mathrm{C}=\mathrm{C}$ ), $1543\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1353\left(\mathrm{C}-\mathrm{NO}_{2}\right), 818(\mathrm{C}-\mathrm{Cl}), 733(\mathrm{C}-\mathrm{H})$ $\left.1246(\mathrm{C}-\mathrm{O}), 1166(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}$, Bt-4), $8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{Bt}-5), 8.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Bt}-7), 8.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-$ $\left.2^{1}\right), 7.5\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .7 .94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{Be}-$ $6^{1}$ ). |
| 26 | B26 | $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{O}_{8} \mathrm{~N}_{6}$ | 374 | 208-210 | $0.90^{3}$ | $\begin{gathered} \text { IR }(\mathrm{KBr}) \mathrm{cm}^{-1} 1790(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{C}), 1551\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1341\left(\mathrm{C}-\mathrm{NO}_{2}\right), 732(\mathrm{C}-\mathrm{H}) 1238(\mathrm{C}-\mathrm{O}), \\ \left.1161(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.22(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Bt}-4), 8.48 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.94(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 9.23\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 9.46 \\ \left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 9.27\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) . \end{gathered}$ |

Dabhade PS.: Asian Journal of Biomedical and Pharmaceutical Sciences 3(17) 2013, 29-34

| 27 | B27 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 298 | 198-200 | $0.70^{3}$ | $\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1798(\mathrm{C}=\mathrm{O}), 1664(\mathrm{C}=\mathrm{C}), 1557\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1352\left(\mathrm{C}-\mathrm{NO}_{2}\right), 733(\mathrm{C}-\mathrm{H}) 1245(\mathrm{C}-\mathrm{O}), \\ \left.1148(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.21(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.37 \\ (1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.84(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 7.84\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 2.10 \\ \left(3 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz},{\left.\mathrm{Be}-3^{1} \mathrm{CH}_{3}\right), 7.4\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.35\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right) .}_{7.94\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right) .}\right. \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | B28 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 298 | 184-187 | $0.84{ }^{1}$ | IR ( KBr ) cm ${ }^{-1} 1801$ (C=O), $1650(\mathrm{C}=\mathrm{C}), 1548\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1355\left(\mathrm{C}-\mathrm{NO}_{2}\right), 734(\mathrm{C}-\mathrm{H}) 1240(\mathrm{C}-\mathrm{O})$, $\left.1156(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.35$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 2.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-2^{1} \mathrm{CH}_{3}\right)$, $7.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 7.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{Be}-4^{1}\right), 7.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right)$. $8.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 29 | B29 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{4}$ | 298 | 225-227 | $0.84{ }^{1}$ | IR ( KBr ) cm ${ }^{-1} 1801$ (C=O), $1650(\mathrm{C}=\mathrm{C}), 1548\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1355\left(\mathrm{C}-\mathrm{NO}_{2}\right), 734$ (C-H) $1240(\mathrm{C}-\mathrm{O})$, $\left.1156(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.45$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 7.27$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 2.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 7.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right)$. $8.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |
| 30 | B30 | $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{~N}_{4}$ | 314 | 188-190 | $0.85{ }^{1}$ | IR ( KBr ) cm ${ }^{-1} 1810(\mathrm{C}=\mathrm{O}), 1662(\mathrm{C}=\mathrm{C}), 1555\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1351\left(\mathrm{C}-\mathrm{NO}_{2}\right), 735(\mathrm{C}-\mathrm{H}) 1239(\mathrm{C}-\mathrm{O})$, $\left.1156(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta\right): 8.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Bt}-4), 8.45$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Bt}-5), 8.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Bt}-7), 8.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Be}-2^{1}\right), 6.98$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Be}-3^{1}\right), 3.73\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{Be}-4^{1} \mathrm{CH}_{3}\right), 6.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Be}-5^{1}\right)$. $8.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Be}-6^{1}\right)$. |

Table No. 2: Physicochemical and Spectral data of synthesized compounds (B1-B30)
Mobile Phase: Benzene ${ }^{1}$, Benzene: Acetone 10:0.5 ${ }^{2}$, Benzene: Acetone $10: 1^{3}$, Chloroform: Methanol 10:1 ${ }^{4}$, Chloroform: Acetone 10:1 ${ }^{5}$, Chloroform ${ }^{6}$.
Procedure for the synthesis of derivatives of 1- media (Sabourand's glucose broth) was poured into (Benzoyloxy)-(1H-Benzo[d] [1,2,3]triazol-1-yl): sterilized test tubes. 1 ml of $1 \mu \mathrm{~m} / \mathrm{ml}$ test solution was substituted benzoic acid ( $0.01 \mathrm{~mol}, 1.22 \mathrm{gm}$ ) and substituted 1 -hydroxy benzotriazole ( $0.01 \mathrm{~mol}, 1.35 \mathrm{gm}$ ) were dissolved in dried tetra hydra furan (THF, 40 ml ) in two-neck round bottom flask with stirrer. The solution was cooled to $0-5^{\circ} \mathrm{C}$. to it $2.26 \mathrm{gm}(0.011 \mathrm{~mol})$ of dicyclohexylcarbdiimide (DCC) was added with stirring. The mixture was stirred for 2 hrs , and then allowed to warm to room temperature and stirred for an additional 2 hrs . The precipitate of dicyclohexylurea was removed by filtration. THF was evaporated by vacuum distillation. The residue was dissolved in 100 ml of solvent ether (diethyl ether) and separated ethereal layer was washed with sodium carbonate $\left(\mathrm{NaHCO}_{3}\right)$ solution ( $20 \mathrm{ml} \times 3$ times) to neutralize unreacted acid, then with water, and was dried with anhydrous sodium sulphate. The ether was removed on water bath, and the residue is collected and recrystallized from pet-ether at $40-46^{\circ} \mathrm{C}$.

## Determination of antifungal activity

The antifungal activity was evaluated by tube dilution method (Turbidimetric method) [9] one ml of sterilized transferred in one tube and serially diluted to give a concentration of $0.5,0.25,0.125,0.0625,0.0312$ \& $0.01561 \mu \mathrm{~m} / \mathrm{ml}$. To all the tubes 0.1 ml of suspension of fungal in saline was added and the tubes were incubated at $30^{\circ} \mathrm{C}$ (T. rubrum and $M$. furfur) and at $25^{\circ} \mathrm{C}$ ( $E$. floccosum) for 72 hrs. The growth in the tubes was observed visually for turbidity and inhibition was determined by absence of growth. MIC was determined by the lowest concentration of sample that prevented the development of turbidity. Activity was compared with Ketoconazole

## 3. RESULTS AND DISCUSSION:

The in vitro antifungal activities of compounds B1-B30, using the tube dilution method (turbidometric method). The minimum inhibitory concentration (MIC) values ( $\mathrm{mg} / \mathrm{ml}$ ) obtained from triplicate assay (three or two test tubes with identical results were taken as MICs) against Epidermophyton floccosum, Trychophyton rubrum and Malassazia furfur are compared with Ketoconazole. The MIC values are presented in the Table 3.

| Sr. No. | Compound Code | Epidermophyton floccosum | Trychophyton rubrum | Malassazia furfur |
| :---: | :---: | :---: | :---: | :---: |
| 1 | B1 | 0.125 | 0.0625 | 0.125 |
| 2 | B2 | 0.125 | 0.0625 | 0.125 |
| 3 | B3 | 0.125 | 0.125 | 0.125 |
| 4 | B4 | 0.125 | 0.25 | 0.125 |
| 5 | B5 | 0.25 | 0.25 | 0.125 |
| 6 | B6 | 0.5 | 0.125 | 0.125 |
| 7 | B7 | 0.25 | 0.5 | 0.125 |
| 8 | B8 | 0.125 | 0.0625 | 0.25 |
| 9 | B9 | 0.25 | 0.125 | 0.25 |
| 10 | B10 | 1.506 | 1.506 | 0.25 |
| 11 | B11 | 0.0625 |  | 0.125 |

Dabhade PS.: Asian Journal of Biomedical and Pharmaceutical Sciences 3(17) 2013, 29-34

| 12 | B12 | 0.5 | 0.125 | 0.125 |
| :---: | :---: | :---: | :---: | :---: |
| 13 | B13 | 0.0625 | 0.125 | 0.125 |
| 14 | B14 | 0.25 | 0.125 | 0.125 |
| 15 | B15 | 0.5 | 0.125 | 0.125 |
| 16 | B16 | 0.0625 | 0.0625 | 0.125 |
| 17 | B17 | 0.125 | 0.125 | 0.25 |
| 18 | B18 | 0.0625 | 0.25 | 0.25 |
| 19 | B19 | 0.25 | 0.125 | 0.25 |
| 20 | B20 | 0.25 | 0.25 | 0.25 |
| 21 | B21 | 0.25 | 0.25 | 0.25 |
| 22 | B22 | 0.5 | 0.5 | 0.5 |
| 23 | B23 | 0.25 | 0.25 | 0.125 |
| 24 | B24 | 0.25 | 0.125 | 0.125 |
| 25 | B25 | 0.25 | 0.5 | 0.25 |
| 26 | B26 | 0.5 | 0.125 | 0.125 |
| 27 | B27 | 0.125 | 0.0625 | 0.125 |
| 28 | B28 | 0.25 | 0.125 | 0.125 |
| 29 | B29 | 0.25 | 0.125 | 0.125 |
| 30 | B30 | 0.125 | 0.0625 | 0.125 |
| 31 | Ketoconazole | 0.0156 | 0.0156 | 0.0156 |

Table No. 3: In vitro antifungal activity of compounds B1-B30.

From antifungal screening it was observed that the compounds B11, B13, B16 and B18 showed MIC values comparable to that of Ketoconazole on E.floccosum, compound B1, B2, B9, B16, B27 and B30 showed good activity against T.rubrum, and no compound was found to be effective against M.furfur. Introduction of electron withdrawing group chloro at 6 -position on the benzotriazole ring in compound 2 g -j considerably reduced the compounds activities against T.rubrum.

## 4. CONCLUSION:

In summary, a close examination of in vitro antifungal activities of variously substituted
1-hydroxy-(1H-Benzo[d] [1,2,3]triazol-1-yl) against the fungal strains provide a better structure activity correlation of the tested compounds, those with Chloro group at C-6 exerted lowest level of antifungal activity. And there is need to synthesize more compounds with varied substitutions on benzotriazole \& phenyl ring, which can advances the SAR on benzotriazole for further optimization of antifungal benzotriazole for greater potency and broader spectrum of activity.

## 5. ACKNOWLEDGEMENTS:

This study was financial supported by University of Pune, Maharashtra, India.

## 6. REFERENCES

1. Latge JP.: Clin. Microbiol. Rev. 1999; 12: 310-350.
2. Steenbergen JN, Casadevall A.: J. Clin. Microbiol. 2000; 38:19741976.
3. Demirayak S, Benkli K, Given G.: Pharm. Acta Helv. 1998; 72:285290.
4. Lamb DC, Kelly BC, Baldwin BC, Kelly SL.: Chem. Biol. Interact. 2000; 125:165-175.
5. John HB, John MB. Wilson and Gisvold's Textbook of Organic Medicinal andPharmaceutical Chemistry. New York: Lippincott Williams \& Wilkins.2004; 11: 217-281.
6. Konig W, Geiger R. Chem. Ber. 1970; 103:788-798.
7. Dyer JR. Application of Absorption Spectroscopy of Organic Compounds.1999; 4:22.
8. William S, Fleming I. Spectroscopic Method in Organic Chemistry. New Delhi: Tata Mc-Graw-Hill Publishing Compony.1988; 4:33-97.
9. Tortora JG, Funke BR, Case Cl . Microbiology an Introduction: Addison Wesley Longman. 1997; 6:672.

Conflict of Interest: None Declared

