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ABSTRACT 

The study used the Autoregressive Conditional Density (ACD) methodology to model 

time-varying higher moments in the distribution of returns of the JSE All Share Index (JSE-

ALSI) over the15-year period, January 2003 to December 2017.  We found that the fourth 

higher moment beyond the variance is needed to completely describe the distribution of 

returns during the sample period. This was done with the GARCH (1, 1)-ACD-NIG model. 

Further, backtests were performed using the ACD and GARCH models at 1% and 5% to 

ascertain the soundness of these models in estimating firm risk exposures. The analysis 

generated the correct number of VaR exceedances which are independent too; hence we fail 

to reject either model as suitable for the estimation of risk. We also performed the Berkowitz 

independence test at the 1% quantile. Both models generated higher p-values with the 

GARCH model seemingly providing a slightly better fit in the tails. Overall, the results show 

that the fourth moment is needed to completely characterize the distribution of the returns 

during the sample period but the various goodness-of-fit tests are unable to discriminate 

clearly between the GARCH(1,1) and the GARCH(1, 1)-ACD-NIG models.  

Keywords:  Autoregressive Conditional Density Model, All Share Index Returns, Emerging 

Markets, Johannesburg Stock Exchange, Financial Crisis Financial Markets, Volatility. 

INTRODUCTION 

Extreme events in financial markets are regaining a renewed focus since “the Great 

Moderation” of the 1980s. Increased market turbulence and the frequency of occurrence 

starting with the Russian default and the near collapse of the eponymous investment firm, 

Long Term Capital Management, has led some finance experts and economists to coin the 

descriptive term the “new normal”. A summary of the major financial crises from the stock 

markets crash of October 19, 1987 to the just ended global financial crisis can be found in 

Kim et al. (2011). Poon et al. (2003) referred to some of these events as large deviations in 

portfolio returns, corporate bankruptcies, collapsed asset prices and stock market implosions. 

Traditional GARCH class of models capture risk characteristics of markets returns when the 

market environment is benign and devoid of major upheavals. However, when markets are in 

turbulence, returns can swing between extremes. The resulting empirics of fat-tails and badly 

skewed distributions make the assumptions of time-invariant higher moment distributions 

typically untenable.  

The Autoregressive Conditional Density (ACD) model is a generalization of the 

GARCH-type model developed by Hansen (1994) as a means to account for the conditional 

skew and shape dynamics beyond the variance captured by the (G)ARCH of Engle (1982) 

and Bollerslev (1986). Hansen's work provided a strong theoretical foundation that has 

enabled financial economists to look at time-varying skew and shape dimensions of the 
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distribution of the returns of financial assets. Hitherto, the GARCH class of models have been 

silent on the time variation of the skewness and kurtosis of distributions in the 

heteroscedasticity modeling of time series. These higher moments are assumed to be time-

invariant and have been excluded in the definition of 'risk' as it applies to the returns of 

financial assets. Some earlier authors, for example, Engle & Gonzalez-Rivera (1991); Liu & 

Brorsen (1992) and Engle & Bollerslev (1986), among others, recognized the need to 

incorporate higher moments in their analyses but assumed they are constant.  

Unfortunately, in the current turbulent trading environment, market data can be 

severely skewed with attendant fat-tails such that these third and fourth moments add 

substantially to volatility of market returns (Uppal & Ullah Mangla, 2013). Traditional risk 

models are known to breakdown when markets are roiling and firms suffer large losses as a 

result. The practice in finance is to isolate and model the tails using extreme value theory that 

relies heavily on the General Pareto Distribution (GPD) (Coles, 2001; Longin, 1996). 

Volatility, within the mean-variance framework of Markowitz (1952), is the most appropriate 

risk proxy so long as the underlying density is Gaussian. By extending the parameter space to 

include time-varying skew and scale in distributions, the models provide the flexibility unlike 

found in the class of GARCH models. ACD models, thus, provide a complete description of 

the markets returns observed as stylized facts in finance. 

Researchers and practitioners in most branches of finance have recognised the need to 

incorporate higher moments in trading and investment activities in order to appropriately 

price financial assets. This is especially true in information starved emerging and frontier 

markets (Kratz, 1999) and for relatively newly trading instruments and investment products 

in the markets (Anderson & Harris, 1986). Hwang & Satchell (1999) investigated asset prices 

in emerging markets using higher moments and found that significant mispricing exists when 

these higher moments are ignored. Jondeau & Rockinger (2012) examined distribution timing 

up to the fourth moment, assuming non-normality in asset allocation strategies. The results 

suggest that this strategy yielded significant gains of around 1.4%. Meanwhile, Perez-Quiros 

& Timmermann (2001) used higher moments to provide a full description of the 

characteristics of stock return distributions. Using a mixture of student-t for heavy-tails and 

normal distributions, the authors demonstrated that going beyond the first two moments, 

models involving time-varying skew and scale parameters are better at accounting for outliers 

in return distributions. Barroso & Santa-Clara (2015) also found evidence that momentum 

strategies in investing can be improved with higher moments in distributions. Momentum 

strategies are prone to crashes with the evidence pointing to negative skew and kurtosis. By 

making provision for these higher moments in their strategies, investors have been able to 

avoid the occasional implosions and improve the Sharpe ratios of their returns. 

Increasingly, models involving higher moments are being used in risk management to 

fix the inadequacies in traditional Value-at-Risk models (VaR). VaR's reliance on the 

quantiles of Gaussian distributions have been questioned in the finance literature (Hartz et al., 

2006; Gencay & Selcuk, 2004; Szego, 2002; Britten-Jones & Schaefer, 1999). Wilhelmsson 

(2009) demonstrated the superiority of inclusion of higher moments using an NIG-ACD 

models to fit S&P500 data for computing market VaR. This is important for calculating 

capital requirements under the Basel III rules.  In a sense, the skew and kurtosis arising out of 

the distribution of financial asset returns contribute significantly to risk. Rosenberg & 

Schuermann (2006) and Fang & Lai (1997) asserted that variance models should provide for 

higher moments when pricing assets. Guidolin & Timmermann (2008) provide a stronger 

case for accounting for these higher moments in situations of regime switching in 

international asset allocation decisions. This stance is supported by earlier work in asset 

pricing tests by Harvey & Siddique (2000). 
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In today's markets, volatility is becoming the main market driver and periods of calm 

have been interspersed with long periods of market gyrations. This study, with full 

specification of the risk parameters, is important in the context of an emerging equity market 

like the Johannesburg Stock Exchange where, traditional models such as GARCH which rely 

heavily on the first two moments provide an inadequate specification of risk as far as the fit 

of the data is concerned. On the contrary, higher moments with time-varying skew and tail 

behaviour provide a complete characterization of the heteroscedastic dynamics for the 

distribution of market returns. This, we believe, is an important contribution of this study to 

the evolving literature on volatility for investment practice. Numerous studies have been done 

on the volatility of the JSE market index. For example Oberholzer & Venter (2015); Babikir 

et al. (2012); Chinzara (2012), and McMillan & Thupayagale (2010) used JSE-ASI and relied 

essentially on GARCH models specifying the time-varying second moment to capture the 

heteroscedastic properties of the return distributions. Our study stands out in this class by 

modelling volatility up to the fourth moment. This provides a better characterization of the 

distributions of returns for purposes of pricing risk-based equity instruments. 

The remainder of the paper is organised as follows. Section two is devoted to the 

presentation and discussion of ACD models and their properties. Section three describes the 

data and application of ACD methodology to the data. Section four concludes with 

discussions and recommendation for further work.    

METHODOLOGY 

Model 

Let the price of the stock be    on day   where      . Then                is the 

log-return of a sample of equity prices. Now the ACD model is an extension of the GARCH 

with additional parameters specified to capture time-varying third and fourth moments of the 

distribution as: 

                                                  (1) 

                                          (2) 

                              (3) 

  
           

        
      (4) 

 

With the usual parameter constraints on    ,      and     to ensure the positivity of 

the variance. 

The innovations    driving the randomness are drawn from a distribution   with the 

additional parameters    and    which have been parameterized as: 

           
        

      ̅ 
       (5) 

and 

              
    ̅       (6) 

respectively 

 

The skew parameter     describes the departure of the distribution from symmetry 

while the shape parameter    controls the kurtosis of the tails. Both are used in calculating the 

respective time-varying third and fourth moments of the distribution.      are transformation 
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functions which ensure that the motion dynamics of the parameters    and    are bounded in 

the interval       of the real line.   and   are chosen to reflect the region of interest for   .  

For purposes of analysis, Hansen (1994); and Jondeau & Rockinger (2003), provided 

descriptions of the motion dynamics parametrized for the skew and kurtosis respectively as: 

  

 ̅                      
     ̅           (7) 

and 

 ̅         |    |           |    |           ̅   .           (8) 

 

The coefficients    and    represent the forcing parameters driving the motion 

dynamics of the differential equations (5) and (6) respectively.    and    are the regression 

constants,      and      represent the model coefficients with    and    denoting respectively 

the skew and shape. 

Parameter Estimation and Inference 

Following the notation of Hansen (1994), the log-likelihood for the conditional 

functions can be written as: 

      |                   ∑       
        (9) 

With the vector θ =                    as the parameter space containing the descriptors of the 

distribution and  

              |                  .          (10) 

Finding the maximum likelihood estimate,  ̂   , involves writing the optimizations 

conditions and 

 

  
       

 

  
    (     |     )   

 

  
              (11) 

Solving for  . 

The  s obtained from the above are point estimates with a lot of uncertainty. We 

estimate the uncertainty around these estimates using robust errors first suggested by White 

(1982). The variance-covariance of the square error matrix is given by: 

 ̂    ̂   ̂ ̂        (12) 

where  

 ̂    ∑
 

     
    ̂  

         (13) 

and  

 ̂   ∑
 

  
  ( ̂)

 

  
 
       ̂  . 

The square roots of the leading diagonal of this matrix constitute the robust errors 

associated with our estimates. 

RESULTS AND DISCUSSION 

Data Description and Analysis 
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We used a sample of daily aggregate index levels of the JSE-ASI from January 02, 

2003 to December 31, 2017. The plot of the evolution of the index over the period is shown 

in Figure 1. 

 
 

FIGURE 1 

 INDEX LEVEL OF THE JSE ALL-SHARE INDEX 

 

Figure 1 shows that the level of the JSE ALSI is gyrating over time but overall it is 

trending upwards. The market index took a tumble during 2007-2009, a period coinciding 

with the global financial crisis. The first difference of the logs of prices was analysed to get 

the returns which are presented in Figure 2. 

 
FIGURE 2 

 RETURNS OF THE JSE ALL SHARE INDEX 

 

It can be seen in Figure 2 that the returns across the period have been generally 

turbulent, particularly, during the years 2007-2009 when volatility was extremely high. 

Volatility clusters can be seen as characterising the evolutions of returns in the sample period.  

We conducted unit root test to assess stationarity of the returns series using the Augmented 

Dickey-Fuller test. The test returned a            with a             ; hence we 

reject non-stationarity and conclude the series is stationary. The basic statistics of the data is 

summarised in Table 1.  
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We plotted the histogram of the returns in the left of Figure 3 and overlapped it with 

the normal distributed curve. Clearly there is a marked departure from normality as 

confirmed by the excess kurtosis in Table 1. There is also slight negative asymmetry. 

 

 

 
 

FIGURE 3 

 HISTOGRAM AND Q-Q PLOTS OF THE JSE ALL SHARE INDEX RETURNS 

 

Again, the marked departure from normality is confirmed by the quantile-quantile plot 

on the right of Figure 3 showing clearly the deviation from the Gaussian distribution at the 

tails. A formal Cramer-von Mises test was carried out for normality. This generated a p-value 

of            confirming the log-returns are not normal. This provides the reason to seek 

the descriptors of the higher moments. 

The presence of (G)ARCH effects was investigated using Engle's LM test. The test 

returned a           with a p-value<          confirming the presence of G(ARCH) 

effects.  We fit the GARCH(1, 1)-ACD-NIG models to the data with the racd  package 

developed by Ghalanos (2016) using the R language (R Core Team, 2018). Table 2 displays 

the results of the ACD model from the analysis. 

 
Table 2 

PARAMETER ESTIMATES OF ACD MODEL 

 Estimate Std. Error t- value p-value 

  0.000789 0.00013 6.0811 0.0000 

AR(1) 0.876772 0.020183 43.44063 0.0000 

MA(1) -0.90846 0.015847 -57.3281 0.0000 

  0.083218 0.00172 48.37585 0.0000 

  0.906974 0.000128 7072.701 0.0000 

   -0.30709 1.040746 -0.29506 0.7679 

    -0.0136 0.097237 -0.13988 0.8888 

    0.541614 1.5493 0.34959 0.7266 

   0.428893 0.478971 0.89545 0.3705 
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Table 1 

SUMMARY STATISTICS 

No. of 

Obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Variance Skewness Ex 

Kurtosis 

3748 -7.3824 6.8772 -0.5571 0.0927 0.7195 1.3986 -0.1669 3.6724 
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Table 2 

PARAMETER ESTIMATES OF ACD MODEL 

    0.112914 0.14912 0.7572 0.4489 

    0.664015 0.154398 4.30066 0.0000 

    0.008002 0.61173 0.01308 0.9896 

  0.000001 NA NA NA 

Note: *Prefix: sk stands for skew and sh stands for shape. 

 

It can be inferred from Table 2 that the parameter of the higher fourth moment,    , is 

significant with a low p-value. This parameter determines the kurtosis of the distribution of 

returns. Thus, tail events will be dominant in the market. The result is consistent with the 

summary statistics in Table 1 which shows a slight left skew but an elevated kurtosis. Returns 

are, on the average, evenly distributed around the mean for the sample period.  

Table 3 compares the various information criteria for the respective models ACD and 

GARCH. The Akaike, Shibata and Hannan-Quinn information criteria selected the ACD 

models as providing a better model fit to the data. As a rule, the Bayes criterion penalizes 

heavily complex models which the ACD is in an attempt to capture higher moment dynamics. 

Therefore, we can conclude that the finding is consistent. 

 
Table 3 

 INFORMATION CRITERIA OF MODELS 

 ACD GARCH 

Akaike -6.3554 -6.3518 

Bayes -6.3355 -6.3418 

Shibata -6.3555 -6.3518 

Hannan-Quinn -6.3483 -6.3482 

 

The evolution of the conditional volatility during the sample period is shown in 

Figure 4, which shows that risk pressures were dominant in the period leading up to the 

global financial crisis in 2008-2009. Volatility was highest during the financial crisis showing 

the contagious effects from the developed markets. Volatility has remained at pre-crisis levels 

since then with occasional flare ups due to developments in the underlying economy. 

 
 

FIGURE 4 

EVOLUTION OF VOLATILITY FOR THE SAMPLE PERIOD 
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As Figure 5 shows, the skew varies wildly occasionally, however. Investor strategies 

and appetite for risk will determine where to ignore the fluctuations in skew or to keep an eye 

on it. 

 
 

FIGURE 5 

 TIME-VARYING SKEW OF THE MARKET RETURNS 

 

On the other hand, the shape of the distribution is significant. There is a higher 

probability of extreme outcomes than specified by a normal distribution of returns. This, 

investors cannot ignore.  

Figure 6 shows the varying nature of the fourth moment of the distribution of returns. 

 
 

FIGURE 6 

 TIME-VARYING KURTOSIS OF JSE ALL SHARE INDEX RETURNS 

 

The graph shows kurtosis does rise to extremes during market trading rather very 

often. The effect of fat-tails on asset allocations to risk management decisions is well 

documented in finance literature (Christoffersen & Diebold, 2000; Rosenberg & Schuermann, 

2006). Tail events arising out of fat-tails have sparked financial crises so often over the past 

three decades that modelling the risk of tails of financial returns has spawned a whole new 

research stream in finance. Jorion (2000)  attributed the demise of Long-Term Capital 

Management to being caught out by tail events. These tail events, according to Hartmann et 
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al., (2004), tend to be more severe when markets are in turmoil. This has been confirmed in a 

recent study of the effect of tail risk on asset prices by Kelly & Jiang (2014). 

This study investigated the coverage levels by backtesting both the ACD and GARCH 

models at 1% and 5% respectively to ascertain the soundness of these models in estimating 

firm risk exposures.  We relied on the Christoffersen's (1998) joint test for independence and 

correct coverage using the conditional coverage test. This test requires that the violations or 

VaR exceedances do not exceed given expected levels and also that they be conditionally 

independent. Table 4 presents the results with the plots at the respective 1% and 5% exhibited 

in Figure 6. 

 
Table 4 

COVERAGE TEST RESULTS FOR ACD AND GARCH AT 1% AND 5% 

 expected.exceedances actual.exceedances cc.LRp cc.Decision 

ACD (1%) 17 20 0.666 Fail to Reject H0 

ACD (5%) 87 87 0.946 Fail to Reject H0 

GARCH (1%) 17 18 0.823 Fail to Reject H0 

GARCH (5%) 87 90 0.946 Fail to Reject H0 

 

 
FIGURE 6 

EVOLVING QUANTILES AT 1% AND 5%  

 

Results show that our analysis generated the correct number of VaR exceedances 

which are independent too as shown by the likelihood ratio for the conditional coverage 

(cc.LRp) column; hence we fail to reject either of the models. In either case, at the 1% 

coverage level, the GARCH model performs better as a risk model than the ACD model. 

However, at 5% coverage level, the test is unable to discriminate among the models. Lastly, 

we tested for the goodness of fit of the tail distribution using the Berkowitz test (Berkowitz, 

2001), testing at the 1% quantile. Both models generated higher p-values with the GARCH 

model seemingly slightly providing a better fit in the tails. This anomaly, even though not 

severe, should be investigated further. Overall looking at the exhibit in Table 5, we fail to 
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reject the null hypothesis that the ACD and GARCH models properly fit the tails of the 

distribution. 

 
Table 5 

RESULTS OF GOOD-OF-FIT USING BERKOWITZ TEST 
 uLL rLL LRp Decision 

ACD -108.46 -108.66 0.8191 Fail to reject H0 

GARCH -99.59 -99.61 0.9802 Fail to reject H0 

 

The test results both from Tables 4 and 5 suggest that the GARCH model provide 

overall model fit compared to the ACD model. However, Hwang & Satchell (1999) stress the 

important of higher moments in properly estimating market risk in emerging markets. This 

point is further buttressed by Harvey (2000), who claims that the second moment is not 

enough in characterising risks in international markets outside the US. This would suggest 

there are lurking risks in the higher moments that investors must consider.    

Emerging market assets can look cheap if they are not properly priced. This could be 

the result of under estimation of risk leading to such mispricing. Describing the distribution 

of market returns by variance alone is based on assumptions that cannot be defended in the 

face of empirical observation of return distributions. By capturing time-varying skew and 

shape of the returns, ACD models provide a complete description of the risk spectrum of the 

market returns. The ACD models situate volatility estimation within the experiences of 

market practitioners largely from first principles. GARCH models do not tell the whole story 

of volatility of market returns. 

The deficiencies in the current generation of risk models have been highlighted 

extensively by Jorion (2009); Danielsson (2008); Sarma et al. (2003) and Eberlein (1998); 

among others. For long GARCH models and their variants has been the mainstay in finance 

for volatility modelling. But as shown by Danielsson & de Vries (2000), such models are 

unsuitable to calculating risk on a large scale. ACD models provide a better fit for the returns 

of equities as long as they capture the full range of moments that describe the fully the 

distribution of returns.  

Aloui et al. (2011) posit that fat-tails are increasingly observed in equity returns 

coming from emerging markets of which includes the Johannesburg Stock Exchange. Thus, 

investors can no longer ignore these dimensions of risk. Fat-tails add to the risk of returns 

from equities on the JSE and this should be recognized by market actors. In the extreme 

cases, the left tails of distributions of returns from the aggregate index of the JSE should be 

isolated and analyzed to reveal the hidden risks likely to spring surprises on investors. Indeed, 

this is the recommendation of Mittnik et al. (2000). This should be even more relevant today 

given the frequency of market turmoil.  

CONCLUSION 

Our study provides evidence that higher moments, especially the fourth moment, are 

needed to completely describe the risk of market returns during the sample period. However, 

goodness-of-fit tests could not discriminate clearly between traditional GARCH(1,1) model 

on the one hand and the GARCH(1, 1)-ACD-NIG model on the other hand. We think this is 

due to using an aggregate market index which confers properties different those of the 

constituent stocks on the data. We think this work needs further investigation using the 

individual stocks constituting the broad JSE market index. 
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