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ABSTRACT 

 PCA (Principal Component Analysis) reduces the dimensionality of an input dataset 

while also ensuring that it preserves maximum information. In the present work, we conducted a 

PCA on US treasury Bonds. We took a data set of 9 treasury bonds of various maturities and 

computed the principal factors that explain the maximum variances. This study suggested a set of 

hedges that effectively hedge the bond portfolio's significant risk without taking an off-setting 

position with all the bond holdings. This methodology of creating a hedge against the interest 

rate movement will reduce the trading desk's hedging cost and increase operational efficiency, 

thereby reducing operational risk. The extraction of Eigenvalues and Eigenvectors from the data 

produced 9 PCs (Principal Components), of which the first two explain 99.137% of all variances 

in the bond yields. Analyzing the correlations between the first two PCs and the initial variables 

revealed that the best bonds to hedge in the portfolio are the five-year and 7-year maturity 

bonds.  
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INTRODUCTION 

 The modern business and policymaking environments are driven by the players' ability to 

utilize the vast amounts of information available to make competent decisions. In the financial 

market domain mainly, an increasingly large volume of data is generated every day. The advent 

of powerful machine learning and big data technologies makes it easy for financial analysts to 

promptly get high-quality financial market information and forecasts. However, in some cases, 

data that contains too many dimensions or features may lower the accuracy of a model because it 

presents the machine learning algorithms with overwhelming datasets to be generalized (Guo et 

al., 2015). This may lead to inaccurate forecasts as the algorithms attempt to fit all the dataset's 

features into a model. To address this problem, ways of reducing data dimensionality have been 

developed to curb the challenges of overfitting and the complexity of large datasets (Mosetti, 

2016). This can be achieved using feature selection or feature extraction (Sabău-Popa et al., 

2020). Feature selection involves choosing a subset of the original features by expelling 

redundant features using variance thresholds. In contrast, feature selection involves generating 

new features from the original data using principal component analysis (PCA). This paper 

examines PCA and applies it to determine an effective hedging strategy of a Treasury bond 

portfolio using a given dataset.  

Application of Principal Component Analysis (PCA) 

 Principal component analysis (PCA) is a mathematical technique of dimensionality 

reduction by transforming correlated input data into an uncorrelated output dataset whose 
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explained information or variance is maximized. Therefore, PCA reduces the dimensionality of 

an input dataset while also ensuring that it preserves maximum information (NiketBorade & R. 

Deshmukh, 2014). The justification of using PCA is that it is possible to take advantage of the 

correlations between the variables in a high dimension-population system to create a smaller 

dimension-population system that can produce a yield curve model with a comparable level of 

predictive accuracy (Papi & Caracciolo, 2018). This conceptualization arises from evidence-

based knowledge that the movements of adjacent points on a financial market yield curve are not 

independent. PCA exploits this interdependent movement of points to identify reduced 

dimensionality models that, although they may reduce accuracy, make the data more 

straightforward and faster for forecasting algorithms to process (Kwong & Mak, 2017).  

 A principal component (PC) is a vector of a variable, such as the forward rate of the yield 

of a treasury bond. When presented on a yield curve, the first PC is considered to carry the most 

weight in capturing variance with the weight-reducing for each subsequent PC (Tran & 

Osipenko, 2016). PCs are obtained through eigenvalue decomposition of the covariance or 

correlation matrix of a stock market portfolio. Therefore, PCs are the vectors of the possible 

deviations of forward rates from the mean rate (Tharwat, 2016). Yield curves usually evolve 

stochastically, featuring multiple possible stochastic differential equations, which are 

substantially complex to model and predict when the entire universe of possible curves from the 

total population is considered (Kelly et al., 2017). The goal of PCA is to minimize the 

dimensions of the dataset to obtain a set of PCs that explain the highest percentage of the yield 

curve variability (Abdi & Williams, 2010). For example, the figure below Figure 1 represents the 

yield curves of the USD economy as of 31st December 2012. The figure on the right represents 

10,000 possible yield curves based on a two-factor Black-Karasinski stochastic model, while the 

first figure shows a reduced yield curve of the population (Redfern & McLean, 2014). Both 

scenarios represent 50 forward rate yield curves. Forecast modeling using the total population of 

yield curves would be complex and result in overfitting.  

 

Figure 1 

YIELD CURVES OF THE USD ECONOMY AS OF 31ST DECEMBER 2012 (REDFERN & MCLEAN, 

2014) 
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 To obtain the reduced yield curve, the three most significant PC yield curves from the 

population were obtained through eigenvalue decomposition and identification of Eigenvectors. 

An Eigenvector occurs at the point of orthogonal or perpendicular intercept between a base PC 

linear curve, starting from the origin of the curve axis, and another PC curve (Sang, Wang & 

Cao, 2017). The eigenvalue, then, is the variance between the point of intercept and the mean 

yield curve.  

 
Figure 2 

DEVIATION OF YIELD CURVES AROUND THE MEAN YIELD CURVE (REDFERN & MCLEAN, 2014) 

 The normalized PC yield curves were obtained and then scaled according to their 

significance from the previous example, as shown below (Figure 3). In the scaled version shown 

in the second diagram, the blue PC curve explains the highest variability of 91%. The second PC 

curve represents a tilt in the yield curve, presenting 8.3% of the variance. The third PC curve can 

be defined as a higher-order buckling capturing only 0.31% variability (Redfern & McLean, 

2014). Therefore, to achieve the objective of dimensionality reduction, the first and second PC 

curves are sufficient for modeling the reduced yield curve since they capture approximately 

99.3% variability in the yield curve.  

 

Figure 3 

PRINCIPAL COMPONENT CURVES (REDFERN & MCLEAN, 2014) 
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To develop a full statistical reduced model of the universe, the yield curve based on the 

forward rate mean value is plotted and the possible subspace determined by plotting the 

maximum eigenvalues of the essential PCs above and below the mean yield curve in the 

direction of the Eigenvectors (Jiang, 2016) as shown in the figure below. The solid curve 

represents the mean yield curve, while the broken curves are the maximum variances of the 

curve as dictated by the most significant PCs. 

 The equation for the forecasted forward rates Fj according to the statistical model 

between j and j + 1 years are represented by the equation:  

F = µ + α1v1,j 

 Where µ is the mean forward yield rate at time t = 1, α1 is the scaling value of the most 

significant PC curve, and vi, j is the jth value of the most considerable PC curve.  

 The equation can be presented in vector terms as:  

F = µ + α1v1 

Where F represents all forward yield rates, µ represents all mean values, and v1 

represents all Eigenvectors making up an essential PC curve. Given the significance of the first 

PC curve that captures 91% of variability, its shape above and below the mean yield curve 

explains the shape of the yield curve universe (Redfern & McLean, 2014). Using the statistical 

model, including more PC curves into the model, one can generate the desired universe of as 

many yield curves as possible.  

 The full statistical model can be presented as:  

      ∑ 

 

   

     

 While the reduced statistical model can be presented as:  

      ∑ 

 

   

     

Application of PCA in Finance  

 PCA analysis is a vital technique for helping investors and analysts decompose the 

movements in portfolio yield curves, analyze, and describe them to understand the risks involved 

in various investments and how to anticipate or mitigate them. The primary basis of PCA is that 

movements in yield curves are caused by interdependent movements in adjacent points within a 

population of yield rates following structural stochastic models (Liu & Wang, 2011). However, 

given the sheer volume of data generated in financial markets, using a universe of data to 

develop predictive models is too complex and may lead to model overfitting. PCA helps analysts 

and investors to simplify these models to obtain simpler predictive models that are also easier for 

supervised machine learning algorithms to process. PCA is a popular method that leads to high 

levels of accuracy due to its focus on feature extraction instead of feature selection. Feature 

extraction exploits entire datasets to achieve a dimensionality reduction, while feature selection 

incorporates filtering tactics to obtain subsets of data (Liu & Wang, 2011). Consequently, by 
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relying on complete datasets and attempting to retain as much information as possible, the 

feature extraction approach of PCA is superior to feature selection techniques.  

 The traditional approach to hedging assumed that parallel shifts in portfolio yield curves 

are necessary for developing risk management strategies. However, recent studies have revealed 

that financial market yield curves follow complex stochastic models, which imply that they are 

likely to frequently display non-parallel shifts (Lin, Wang & Cao, 2015). Although this approach 

may have been valid in the early years of modeling financial market behavior, the modern 

environment is highly complex. It cannot support the linear models that were prevalently applied 

in traditional approaches. Such models tend to oversimplify financial markets and do not 

consider the numerous factors in the modern setting that affect the performance of financial 

instruments. For example, the famous Standard & Poor's (S&P) 500 Index changes its 

composition regularly due to diverse factors ranging from company-specific performance to 

macroeconomic factors (Liu & Wang, 2011). The governing committee of the S&P 500 Index 

appreciates that financial markets follow non-linear patterns that simplistic linear models cannot 

represent, thus, discrediting the assumption of parallel shifts in yield curves as hypothesized by 

traditional risk management models.  

 Alternatively, the PCA method seeks to identify a few factors that affect non-parallel 

shifts in yield curves as possible and use those factors to develop predictive models. The model 

has an advantage over more modern approaches such as the three-factor model. It views 

movements in adjacent points on a yield curve as correlated and seeks to transform them into an 

uncorrelated relationship (Liu & Wang, 2011). The establishment of independence in the output 

eliminates the risk of factor relationship, which is a challenge in other methods such as the three-

factor technique. As a result, the PCA approach provides a highly comprehensive means for 

analysts and investors to craft hedging strategies and reduce risks.  

Interest Rate Risk Management in a Bond Portfolio 

 The dollar value of a 01 (DV01), also called the present value of 01 (PV01), refers to the 

change in the value of financial security, such as a bond, for a basis point change of 0.0001 in 

interest rates. DV01 is measured in the nominal change in dollars and is not expressed as a ratio 

or percentage. As a result, DV01 provides investors and analysts with the evolution of a bond's 

price in dollars based on the 0.0001-point change in its yield to maturity relative to interest rates 

(Chertok, 2012). Since the primary goal of hedging is to lock in a bond's present position 

regardless of any changes in its maturity yield, the par amount for selling or buying a bond's 

hedge position for every $1 par value is determined by the hedge ratio based on the original 

position (Cesari & Mosco, 2017).  

 The effective duration of a bond measures the sensitivity of a bond's prices in relation to 

interest rate fluctuations while considering variables such as final maturity periods in years, 

yields, calls, coupons, and present values. The risks involved in determining the maturity yield of 

bonds increase with time due to the negative correlation between interest rates and bond prices 

(Cesari & Mosco, 2017). This implies that a fall in interest rates increases the prices of bonds 

while a rise in interest rates adversely affects bond prices the risks involved in this relationship 

increase over time. The interpretation of the increase in a bond's risk as its duration increases is 

that an investor is compelled to wait for a longer time to recoup their principal investment and 

yield for a long maturity bond subject to changes in interest rates as compared to a short maturity 

bond whose price will not fall as much in case of a rise in interest rates (Cesari & Mosco, 2017).  
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 The duration of a bond refers to the inverse linear relationship between interest rates and 

bond prices. The linear relationship is a suitable method of measuring the sensitivity of bond 

prices to changes in interest rates but only for small yield fluctuations. When bond yield 

fluctuations are large, the relationship between bond prices and interest rates becomes non-linear, 

making duration an unreliable measure of sensitivity (Cesari & Mosco, 2017). This non-linear 

relationship for large yield fluctuations is called convexity. A combination of both measures 

provides a more accurate estimation of the percentage changes in bond prices due to a certain 

percentage change in bond yield compared to using duration alone.  

PROCESS AND METHODOLOGY 

Data  

We took a constant maturity yield of Treasury bonds and plotted the historical five-year 

yield. Data itself looks correlated, at least for the adjacent maturity, as shown below.  

 

Figure 4 

CONSTANT MATURITY TREASURY YIELD 

 The process and methodology of performing PCA to develop hedging strategies can be 

shown using a time series data from NASDAQ containing the yields of 9 Treasury bonds of 1 

month, three months, six months, one year, two years, three years, five years, seven years, and 20 

years maturities. For this report, it was assumed that the Treasury bonds in the portfolio are held 

equally and that each has an 11.11% representation in the portfolio. The PCA computation is 

done using StatistiXL software. Before using the StatistiXL software, the data were examined to 

ensure that it was complete and continuous. A summary statistic has been extracted.   

The next step is the computation of the correlation matrix. A correlation matrix was 

chosen because the bond yields have different variances. The correlation matrix is necessary for 

measuring whether there are relationships between the yields of the various bonds. This helps to 

identify any redundant information that may arise from high levels of correlation between the 

variables.  

 The further step is the extraction of eigenvalues and eigenvectors from the correlation 

matrix from which the PCs will be computed. The main goal of PCA is to generate a new set of 

values, called PCs, which ensure the least correlation between the variables. PCs are a product of 
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linear combinations of the initial variables to create the uncorrelated variables. There are as 

many PCs as the number of variables. Thus, the data used in this paper will generate 9 PCs. PCs 

are then arranged such that the first PC explains the most significant variance in the dataset, and 

the value of explained variance reduces with each subsequent PC. Calculating the cumulative 

percentage of variance starting with the first PC makes it possible to identify the set of PCs that 

explain the most variance and the corresponding bonds that need to be hedged. This paper aims 

to capture the first set of PCs that explain at least 97% of the bond yield variance.  

 To interpret the results of the PCA, a computation of the correlations between the 

principal components and the initial variables is required. The correlations are calculated using a 

correlation technique called component loading. The correlation between the two is evaluated to 

determine the degree of variance that a PC explains about a variable. The variables whose 

variance is explained the largest by the PCs are the highest correlations with the PCs. Since the 

correlation between independent PCs and the variables varies, choosing the most significant 

variables is a subjective decision. For this paper, the essential variables will be those that PC1 is 

most correlated to.  

RESULTS AND INTERPRETATION 

 The descriptive statistics of the dataset are as follows Table 1:  

Table 1 

DESCRIPTIVE STATISTICS OF THE DATASET 

Variable Mean Std Dev. Std Err N 

1M 1.069 0.842 0.024 1226 

3M 1.127 0.845 0.024 1226 

6M 1.235 0.828 0.024 1226 

1Y 1.341 0.800 0.023 1226 

2Y 1.502 0.726 0.021 1226 

3Y 1.635 0.664 0.019 1226 

5Y 1.875 0.579 0.017 1226 

7Y 2.086 0.527 0.015 1226 

20Y 2.530 0.433 0.012 1226 

The correlation matrix of the portfolio is as follows Table 2:  

Table 2  

CORRELATION MATRIX 

 1M 3M 6M 1Y 2Y 3Y 5Y 7Y 20Y 

1M 1.000 0.996 0.987 0.963 0.906 0.842 0.694 0.566 0.329 

3M 0.996 1.000 0.996 0.979 0.930 0.872 0.733 0.609 0.372 

6M 0.987 0.996 1.000 0.992 0.955 0.905 0.777 0.659 0.424 

1Y 0.963 0.979 0.992 1.000 0.983 0.946 0.838 0.732 0.502 

2Y 0.906 0.930 0.955 0.983 1.000 0.988 0.918 0.834 0.627 

3Y 0.842 0.872 0.905 0.946 0.988 1.000 0.967 0.906 0.729 

5Y 0.694 0.733 0.777 0.838 0.918 0.967 1.000 0.984 0.871 

7Y 0.566 0.609 0.659 0.732 0.834 0.906 0.984 1.000 0.942 

20Y 0.329 0.372 0.424 0.502 0.627 0.729 0.871 0.942 1.000 
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All the variables show positive correlations. The results of the extraction of eigenvalues 

and the corresponding PCs are as follows Table 3:  

Table 3 

EXPLAINED VARIANCE (EIGENVALUES) 

Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 

Eigenvalu 7.567 1.356 0.065 0.008 0.003 0.001 0.001 0.000 0.000 

% of Var. 84.075 15.062 0.717 0.084 0.035 0.013 0.008 0.003 0.003 

Cum. % 84.075 99.137 99.854 99.938 99.973 99.986 99.994 99.997 100.000 

 

 

Figure 5 

SCREE PLOT 

 From these results, we can determine the PCs that explain the most significant variance 

of bond yields. PC1 explains the most considerable variance of the bond yields of 84.075%, 

followed by PC2 at 15.062% Figure 5. Cumulatively, the first two PCs explain 99.137% of all 

variance of the Treasury bond yields, surpassing the rule of 97% used as the benchmark for this 

paper.  

The correlations between the first two PCs and the variables are as follows Table 4:  

Table 4 

COMPONENT LOADINGS (CORRELATIONS BETWEEN INITIAL 

VARIABLES AND PRINCIPAL COMPONENTS) 

Variable PC 1 PC 2 

1M 0.897 -0.426 

3M 0.921 -0.382 

6M 0.945 -0.323 

1Y 0.972 -0.227 

2Y 0.993 -0.059 

3Y 0.991 0.089 

5Y 0.939 0.335 

7Y 0.868 0.495 

20Y 0.686 0.710 
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From these results, the first PC has a high positive correlation with all the variables as the 

PC that explains most of the variance in bond yields implies that the likelihood that the yields of 

all the Treasury bonds vary together. The three highest correlations are between PC1 and the two 

years maturity bond (0.993), the 3-year maturity bond (0.991), and the 1-year maturity bond 

(0.971). On the other hand, PC2 is negatively correlated to 5 of the initial variables. However, 

since PC2 explains only 15.062% of all variance in bond yields, the implication of PC1 is that 

the yields of all the Treasury bonds change together may still hold. PC2 is positively correlated 

to only 4 of the variables, namely the 3-year (0.089), 5-year (0.335), seven-year (0.495), and 20 

years (0.710) maturity bonds. The most correlated bonds are the 20 years (0.710), seven-year 

(0.495), and five years (0.335).  

 The analysis of the component loadings can be used to determine the set of 2 or 3 

Treasury bonds that are most affected by the variance explained by PC1 and PC2. While the 

highest correlations between the first two PCs and the initial variables point to different bonds, 

estimating the bonds that bear the largest explained variance is possible. PC1 and PC2 

concurrently have positive correlations with four variables: the 3-year, 5-year, seven-year, and 

20-year maturity bonds. The three highest correlations of the four for PC1 are the 3-year (0.991), 

5-year (0.939), and 7-year (0.868) maturity bonds, while for PC2 are the five-year (0.335), 

seven-year (0.495), and 20 years (0.710). Therefore, the two bond yields for which PC1 and PC2 

explain the most variance are the five-year and 7-year bonds.  

Therefore, the most effective hedging strategy for the Treasury bond portfolio is to hedge the 

five-year and 7-year maturity bonds.  

CONCLUSION 

 The advent of powerful machine learning and big data technologies makes it easy for 

financial analysts to promptly get high-quality financial market information and forecasts. 

However, in some cases, data that contains too many dimensions or features may lower the 

accuracy of a model because it presents the machine learning algorithms with overwhelming 

datasets to be generalized. To address this problem, ways of reducing data dimensionality, such 

as principal component analysis (PCA), have been developed to curb the challenges of 

overfitting and the complexity of large datasets. 

 PCA is a mathematical technique of dimensionality reduction by transforming correlated 

input data into an uncorrelated output dataset whose explained information or variance is 

maximized. Therefore, PCA reduces the dimensionality of an input dataset while also ensuring 

that it preserves maximum information. A principal component (PC) is a vector of a variable, 

such as the forward rate of the yield of a treasury bond. When presented on a yield curve, the 

first PC is considered to carry the most weight in capturing variance with the weight-reducing for 

each subsequent PC. Yield curves usually evolve stochastically, featuring multiple possible 

stochastic differential equations, which are substantially complex to model and predict when the 

entire universe of possible curves from the total population is considered. The goal of PCA is to 

minimize the dimensions of the dataset to obtain a set of PCs that explain the highest percentage 

of the yield curve variability.  

 The traditional approach to hedging assumed that parallel shifts in portfolio yield curves 

are necessary for developing risk management strategies. However, recent studies have revealed 

that financial market yield curves follow complex stochastic models, which imply that they are 

likely to display non-parallel shifts frequently. Such models tend to oversimplify financial 

markets and do not consider the numerous factors in the modern setting that affect the 
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performance of financial instruments. The primary basis of PCA is that movements in yield 

curves are caused by interdependent movements in adjacent points within a population of yield 

rates following structural stochastic models. The model has an advantage over more modern 

approaches such as the three-factor model. It views movements in adjacent points on a yield 

curve as correlated and seeks to transform them into an uncorrelated relationship. The 

establishment of independence in the output eliminates the risk of factor relationship, which is a 

challenge in other methods such as the three-factor technique. 

 This paper conducted PCA on a dataset from NASDAQ of 9 Treasury bonds with 

different maturity periods to determine an effective hedging strategy. The computations 

performed on the data include descriptive statistics, correlation matrix, explained variance using 

eigenvalues, component loading, and a scree plot. The extraction of eigenvalues and 

eigenvectors from the data produced 9 PCs, of which the first two explain 99.137% of all 

variance in the bond yields. Analyzing the correlations between the first two PCs and the initial 

variables revealed that the best bonds to hedge in the portfolio are the five-year and 7-year 

maturity bonds. Further research is recommended to develop a statistical method of determining 

the best bonds to hedge based on the component loading tables.  
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