SOCIAL SECTOR DEVELOPMENT AND ECONOMIC GROWTH IN HARYANA

Shiba Shankar Pattayat, Central University of Punjab Poonam Rani, Central University of Haryana

ABSTRACT

This paper attempts to explore the impact of social sector development on economic growth in Haryana. And it also explains the short-run and long-run relationship between economic growth and social development in Harvana using time series data for the period of 1985 to 2016. Various indicators of social sector development, viz., education, health, Relief on natural calamities, sanitation, social security and labour welfare and welfare of Scheduled Caste (SC), Schedule Tribes (ST) and Other Backward Caste (OBC) etc. are used to measure the human capabilities and social development which has implications for long-run economic growth. The major findings of the paper suggest that there exists a high degree of correlation between economic growth and the expenditures on social sector development. Though Granger Causality shows significant results and designates that there is a short-run relationship between the NSDP and social sector Expenditure of Haryana state. The Johansen co-integrating regression suggests a long-run dynamics relationship between growth and social sector development in Haryana. Hence, the policy measures focusing on infrastructure development is highly desirable for initiating social sector development in one hand. On the other hand, provision for better healthcare, sanitation facilities and skill development measures, would sustain the process of long-run economic growth in Haryana.

Keywords: Social Sector, Economic Growth, Haryana.

JEL Code: O4 I0

INTRODUCTION

The social sector development has been considered as an essential prerequisite for sustained human development and economic growth of an economy (Sen, 1989). Because human capabilities provide a firm basis for evaluating living standards and quality of life (Sen, 1989 and 2000). Hence, deliberate attention to the enhancement of freedoms and capabilities would help in the process of economic development. Social¹ sector development sets the foundation for rising income and employment opportunities, productivity growth, technological advancement and hence, helps to enhance the quality of life of people. Development of the social sector is one of the most important components of the economic growth (Romer, 1986, 1989, 1990; Lucas, 1988; Quah and Rauch, 1990, Grossman and Helpman 1991, Rivera-Batiz & Romer 1991).

According to Alvi (2010) "No nation can progress without a strong human capital base". The studies like Nelson and Phelps (1966), Benhabib and Spiegal (1994), Lucas (1988), Mankiw et al. (1992) find that education plays an important role in the process of innovation and human capital accumulation, which helps to increase the labour productivity and hence boost economic

growth. Endogenous growth theory explains the causal connection between economic growth and human capital development (for example, Romer 1986, 1989, 1990 and 1991). Because social sector development needs a strong human capital base which could be built through quality education, better health facility, job opportunities in the organized sector with social security measures etc. Social sector development increases the capabilities of human beings which increases labour productivity and hence boosts economic growth (Strauss and Thomas, 1998). Increasing growth of output, on the other hand, it enables the government to increase the share of spending on social sector development which has implications for long-run socioeconomic development.

This study tries to explore the impact of social sector development on economic growth in Haryana. This study has taken Haryana as the study area because of improving of expenditure on social sector in Haryana. The major reason is that this type of study has not been conducted in any states of India. Therefore, this study is different from others.

The rest of the paper is organized as follows. Section two explains about the previous literature related to social sector development and economic growth (that are both national level studies as well as international level studies). Section three explains the data and methodology which includes the variables used in the present study and outlines the regression model. Section four (it has divided into two sub-section descriptive statistics and econometric results) discuss about the empirical results of the study. And finally, section five concludes the paper and draws upon the policy measures based on the findings of the paper.

LITERATURE REVIEW

A review of earlier studies conducted in various parts of the world finds that social sector development and economic growth are closely inter-related. The studies like Hicks (1979), Streeten (1981), Goldstein (1985), Ram (1985), Strauss & Thomas (1995), Duflo (2001) Haddad et al. (2003) and Culter et al. (2005) & Baldacci (2008) have found that social sector development has positive implications for economic growth. Moreover, the empirical studies like Gerdham et al. (1992) & Hitris & Posnett (1992) in OECD countries, Gbesemete and Gerdtham (1992) & Schultz (2000) in Africa and South American region, Reza et al. (2014) in Iran and Pradhan and Hall (provide year) in Asia have found that social sector development has positive impact on economic growth.

Similarly, in India the earlier studies like Sen (2000); Hooda (2013); Gangal & Gupta (2013); Mohapatra (2013); Haldar et al. (2006) and Bhat & Jain (2004) explains that expenditure on health increases the economic growth through the improvement of health conditions of people which leads to productivity of the people. That productivity expands their percapita income (both in monetary percapita income² and real³ per capita income) as well as their standard of living. Furthermore, it push towards the economic growth and development of the economy.

Datt and Ravallion (1998), explains about the poverty elimination in rural areas for different states of India. Mahal et al. (2000) find that 31 percent of public subsidies on health accrued to urban residents, somewhat higher than their share in the total population of about 25 percent. And the distribution of public health subsidies in a rural area is lower than the urban area in different states of India. This study also identifies that less amount of money spend of health which has negative impacts on the current social welfare and labour productivity, which reduces the per capita income and standard of living of the people. However, this has a negative impact on economic growth and economic development in future because this is a long-run concept. Therefore, this paper attempts to explore the impact of increasing social sector

expenditure (both private and public sector expenditure) on economic growth in Haryana using time series data for the period of 1985 to 2016.

DATA AND METHODOLOGY

This paper is based on secondary data which covers only for Haryana. These data are collected from various sources like Central Statistical Organization (CSO), EPW Research Foundation, Ministry of Human Resource Development, Government of India, Sample Registration System, Census of India, Directorate of Economics and Statistics, Government of Haryana (Handbook of Statistics on State govt. Finances, RBI), etc. All these data are collected over a period of 31 years (from 1985 to 2016) to get a time series. However, these data are covered variables like NSDP (Net State Domestic Product) in Haryana, ESAC (expenditure on Education, Sports, Art & Culture), FWMPH (expenditure on Family Welfare, Medical & Public Health), WSSO (expenditure on Welfare of SC, ST & OBC), LLW (expenditure on Labour & Labour Welfare), SSW expenditure on Social Security & Welfare), HUD (expenditure on Housing and Urban Development) and WSS (expenditure on Water Supply and Sanitation) for the state of Haryana. These variables are transformed into logarithm form to reduce the scale, which also helps to reduce the likely heteroscedasticity⁴ in the data (Table 1).

At the outset, all the transformed variables are checked for stationarity⁵. All the variables have been checked by various methods, viz., Augmented Dicky-Fuller (ADF) test (Equation 1), Phillips-Perron (PP) test (Equation 2), Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests (Equation 3). It is important to note that both ADF test and PP test are formulated to test the null hypothesis that the series is non-stationary, whereas the KPSS test is alternative to which has the null hypothesis is stationary. All the above tests suggest that all the variables are integrated of order, i.e., I (1) variables (Table 2). This means after the first difference they would become stationary or I (0) variables. The graphical representation of the stationary checking (using correlogram) is also given in Annexure 1. Since all the variable are I (1) we have tested the Granger causality (Engel, 1987); Granger, 1969) test (Equation 4) in the first difference form which is I (0) to avoid the likely spuriousness (Table 3). Moreover, a Johansen Co-integrating regression (Johansen, 1988) is also run using the I (1) series following Engel (1987) and Granger (1969) to find the long-run relationship (Equation 4 and Table 4).

ADF test Equation:
$$\Delta R_t = \beta_1 + \beta_2 t + \rho R_{t-1} + \sum_{i=1}^m \alpha_i \Delta R_{t-i} + \varepsilon_t$$
 (1)

Where, ΔR_t is the first difference of the R_t , β_1 is the intercept, β_2 , ρ are the coefficients, t is the time or trend variable, m is the number of lagged terms chosen to ensure that ε_t is white noise, i.e., ε_t contains no autocorrelation, ε_t is the pure white noise error term and $\sum_{i=1}^{m} \alpha_i \Delta R_{t-i}$ is the sum of the lagged values of the dependent variable ΔR_t .

Phillips Perron Equation:
$$\Delta Y_t = \alpha Y_{t-1} + x_t + \varepsilon_t$$
 (2)

KPSS equation:
$$R_{Tt} = x_t \delta + u_t$$
 (3)

And $\alpha = \rho - 1$

 $LNSDP_{t} = \alpha + \beta_{1}LESAC_{t} + \beta_{2}LFWMPH_{t} + \beta_{3}LWSSO_{t} + \beta_{4}LLLW_{t} + \beta_{5}LSSW_{t} + \beta_{6}LHUD_{t} + \beta_{7}LWSS_{t} + \beta_{8}LRANC + \varepsilon_{t}$ (4) Where

LNSDP_t=Log of Net State Domestic Product in Haryana LESAC_t=Log of expenditure on Education, Sports, Art & Culture LFWMPH_t=Log of expenditure on Family Welfare, Medical & Public Health LWSSO_t=Log of expenditure on Welfare of SC, ST & OBC LLLW_t=Log of expenditure on Labour & Labour Welfare LSSW_t=Log of expenditure on Social Security & Welfare LHUD_t=Log of expenditure on Housing and Urban Development LWSS_t=Log of expenditure on Water Supply and Sanitation LRANC_t=Log of Relief on Account of Natural calamities

Source: Author's Calculation

RESULTS AND DISCUSSION

Descriptive Statistics

To know the nature of the variable this paper tested all the variabls by using descriptive statistics. Then it explains the trends and patterns of growth rate and social expenditure in the state of Haryana. The study have plotted the trends of growth rate of NSDP and growth rates of expenditures on various heads of social sector development., It has used to get an idea about the relationship between Net state Domestic Product (NDSP) and expenditures on social sector development in Haryana. However, the compound annual growth rate of social expenditure and NSDP of Haryana is e positive. It was 19.95 (Social Exp.) and 6.92 (NSDP) percent over the study period. Since most of the state is following the recent campaign of "Make in India⁶", the state Haryana is not an exception. It is clear that in the recent years, particularly, since 2005 the growth rate of NSDP is high during the last decade the growth rate of expenditure on social sector development is much higher than that of NSDP growth rate (Figure 1).

Table 1 EXPENDITURE ON SOCIAL SECTOR AND NSDP IN HARYANA, FROM 1985 TO 2015							
Compound Annual Growth Rate	Social Exp.	NSDP					
1985-2016	19.95	6.92					
1985-2000	22.18	5.22					
2001-2016	21.19	8.60					

Sources: Authors' Calculation

FIGURE 1 TRENDS IN NSDP AND EXPENDITURE ON SOCIAL SECTOR DEVELOPMENT IN HARYANA, FROM1986-2015

Source: Author's plot after computing growth rates from the actual data

FIGURE 2 GROWTH OF NSDP AND GROWTH EXPENDITURE ON SOCIAL SECTOR DEVELOPMENT IN HARYANA, 1986-2015

Table 2											
UNIT KUOT TEST RESULTS Stationarity Test Result											
			Stationarity		4 1400 0						
Variables	**** 1	At the Level fo	orm	First difference form							
v al lables	Without	With	With intercept	Without trend	With	With intercept					
	trend and	intercept but	and trend	and intercept	intercept but	and trend					
	intercept	no trend			no trend						
LNGDD	Augmented Dickey Fuller (ADF) Test $I NSDP$ 7.8 (1.0)0.9 (0.0)2.13 (0.5)1.06 (0.2)6.9 (0.0)7.13 (0.0)										
LNSDP	7.8 (1.0)	0.9 (0.9)	-2.13 (0.5)	-1.06 (0.2)	-6.9 (0.0)	-7.13 (0.0)					
LESAC	7.5 (1.0)	-0.9 (0.7)	-4.1 (0.01)	-1.9 (0.05)	-3.7 (0.00)	-3.7 (0.03)					
LFWMPH	6.4 (1.0)	0.5 (0.9)	-4.3 (0.01)	-0.4 (0.4)	-5.7 (0.00)	-5.6 (0.00)					
LHUD	3.5 (0.9)	0.5 (0.9)	-1.7 (0.7)	-3.6 (0.00)	-4.7 (0.00)	-4.8 (0.00)					
LLLW	5.3 (1.0)	-1.3 (0.5)	-2.1 (0.5)	-2.7 (0.00)	-4.7 (0.00)	-4.9 (0.00)					
LSSW	2.9 (0.9)	-2.04 (0.2)	-3.3 (0.07)	-3.4 (0.00)	-4.3 (0.00)	-4.5 (0.00)					
LWSS	4.8 (1.0)	-0.3 (0.9)	-3.5 (0.07)	-0.9 (0.3)	-9.2 (0.00)	-9.02 (0.00)					
LWSSO	3.4 (0.9)	0.8 (0.9)	0.1 (0.9)	-1.8 (0.6)	-4.8 (0.00)	-4.8 (0.00)					
LRANC	1.1 (0.9)	-1.1 (0.7)	-6.8 (0.0)	-9.7 (0.00)	-9.9 (0.00)	-9.79 (0.00)					
	Phillips-Perron (PP) Test										
LNSDP	9.6 (1.0)	1.3 (0.9)	-2.05 (0.5)	-2.4 (0.01)	-7.01 (0.00)	-7.2 (0.00)					
LESAC	5.8 (1.0)	-0.8 (0.7)	-2.2 (0.4)	-1.7 (0.08)	-3.7 (0.00)	-3.7 (0.03)					
LFWMPH	7.4 (1.0)	0.6 (0.9)	-2.2 (0.4)	-2.6 (0.01)	-5.7 (0.00)	-5.6 (0.00)					
LHUD	6.4 (1.0)	0.9 (0.9)	-1.6 (0.7)	-3.6 (0.00)	-4.6 (0.00)	-6.4 (0.00)					
LLLW	4.9 (1.0)	-1.4 (0.5)	-2.2 (0.4)	-2.5 (0.01)	-4.9 (0.00)	-4.8 (0.00)					
LSSW	2.6 (0.9)	-2.06 (0.2)	-3.4 (0.07)	-3.3 (0.00)	-4.2 (0.00)	-4.5 (0.00)					
LWSS	3.0 (0.9)	-0.02 (0.9)	-3.5 (0.05)	-5.8(0.00)	-9.03 (0.00)	-8.8 (0.00)					
LWSSO	4.2 (1.0)	0.16 (0.9)	-1.8 (0.6)	-3.7 (0.00)	-4.8 (0.00)	-4.8 (0.00)					
LRANC	1.9 (0.9)	-2.08 (0.2)	-14.5 (0.00)	-10.7 (0.00)	-31.1 (0.00)	-27.02 (0.00)					
		Kwiatkowsł	ki-Phillips-Schmid	t-Shin (KPSS) To	est						
LNSDP		0.7 (0.4)	0.17 (0.14)		0.22 (0.46)	0.10 (0.14)					
LESAC		0.7 (0.46)	0.05 (0.14)		0.08 (0.46)	0.06 (0.14)					
LFWMPH		0.7 (0.46)	0.1 (0.14)		0.1 (0.46)	0.06 (0.14)					
LHUD		0.7 (0.46)	0.6 (0.14)		0.1 (0.46)	0.07 (0.14)					
LLLW		0.7 (0.46)	0.06 (0.14)		0.1 (0.46)	0.07 (0.14)					
LSSW		0.7 (0.46)	0.06 (0.14)		0.2 (0.46)	0.11 (0.14)					
LWSS		0.7 (0.46)	0.09 (0.14)		0.08 (0.46)	0.08 (0.14)					
LWSSO		0.6 (0.46)	0.16 (0.14)		0.14 (0.46)	0.13 (0.14)					
LRANC		0.7 (0.46)	0.5 (0.14)		0.32 (0.46)	0.32 (0.14)					

Note: Entries in each cell shows Test Statistics and the probability of the Test Statistics is in the parentheses. In case of KPSS test 5% significant tabulated value of the test statics is in the parentheses

Source: Authors' Calculation by using E-views software

This could be due to the initiatives were taken in both 11th and 12th plan periods in order to achieve inclusive growth in India. Since the development of the social sector is indispensable for the achievement of inclusive growth in India. The government of Haryana has also spent substantially on education, healthcare, housing, sanitation and social security and labour welfare for the economic growth and development in Haryana. The result of the descriptive statistics found that though most of the variables do not follow the normal distribution, but they have low standard deviation and moderate skewness (Annexure 2). Furthermore, the high degree of correlation between NSDP with various expenditures on social sector development (Annexure 3) enables us for doing further econometrics analysis.

Econometrics Results

This study has used Granger causality test to find out the cause and effect relationship between NSDP and expenditure on social sector development in Haryana. This method explains about the short-run relationship among the variables which are included in this study. The causality test statistics suggest that NSDP causes the Family Welfare and Medical Facilities (FWMPH), Housing and urban development (HUD), the welfare of SC, ST&OBC (WSSO) and Relief on account of natural calamities (RANC). It indicates that there is a short run relationship between the same variable. But only one variable (Social Security Welfare) have an impact on NSDP (Table 3). This might have happened because of the fact that in the short-run, the government of Haryana could not able to spend on social sector development until 2005 (Figure 2). Furthermore, the increase of social sector development in Haryana could also be affected hugely by the central government schemes (social development schemes⁷) during the last decade, particularly, during the 11th and 12th five years periods. Hence the share of expenditure on social sector development was very high during that (post 2005) periods.

Table 3 GRANGER CAUSALITY TEST RESULTS							
Null Hypothesis	F-Statistic	Prob.					
Causality between NSDP and Exp. On Education, Sports, Art & Culture							
ESAC does not Granger Cause NSDP	1.47612	0.2485					
NSDP does not Granger Cause ESAC	2.56358	0.0979					
Causality between NSDP and Exp. On Family welfa	Causality between NSDP and Exp. On Family welfare & Medical facilities						
FWMPH does not Granger Cause NSDP	0.01656	0.9836					
NSDP does not Granger Cause FWMPH	3.68726	0.0401					
Causality between NSDP and Exp. On Housing &	Urban development	-					
HUD does not Granger Cause NSDP	0.60846	0.5524					
NSDP does not Granger Cause HUD	4.92423	0.0161					
Causality between NSDP and Exp. On Labour & Labour welfare							
LLW does not Granger Cause NSDP	2.56176	0.0981					
NSDP does not Granger Cause LLW	2.14206	0.1393					
Causality between NSDP and Exp. On Water sup	ply and Sanitation						
WSS does not Granger Cause NSDP	0.98816	0.3869					
NSDP does not Granger Cause WSS	1.02539	0.3738					
Causality between NSDP and Exp. On welfare	of SC,ST&OBC	ſ					
WSSO does not Granger Cause NSDP	0.41101	0.6676					
NSDP does not Granger Cause WSSO	4.51779	0.0216					
Causality between NSDP and Exp. On Social S	Security Welfare						
SSW does not Granger Cause NSDP	7.87816	0.0023					
NSDP does not Granger Cause SSW	28.6137	4.007					
Causality between NSDP and Relief on account of	f natural calamities	1					
LRANC does not Granger Cause LNSDP	1.89986	0.1714					
LNSDP does not Granger Cause LRANC	7.76846	0.0025					
Number of Observations	29						

Source: Author's Calculation

Because of the focus on inclusive development in the last decade and initiatives for "Make in India" in recent years. It is expected that both the growth of NSDP and social sector expenditure would increase further in long-period. And more importantly, the increasing expenditure on social sector development would increase labour productivity through skill development. This skill development programme would encourage people (those who belong to women and socially marginalized groups including Muslims) to participate in labour market. Increament of labour force participation in labour market leads to increase parcapita income and standard of living which leads to growth of NSDP in Haryana. It is clear from the results of Johansen co-integration that growth of NSDP and social sector expenditure are significantly related in the long-run i.e. there is a long-run relationship between NSDP and social expenditure in Haryana. Both Johansen's Trace statistics and Maximum Eigen value test suggests that there exists six significant (at 5% level) co-integrating relations (Table 3). This implies the fact that in the long run NSDP and social sector development are inter-dependent and would cause each other.

Table 4 JOHANSEN CO-INTEGRATION RESULTS										
Hypothesized No. of CE(s)	Eigenvalue Trace Statistics (#		TraceCritical ValueStatistics (#)at 5% (p-value)		Critical Value at 5% (p-value)					
None	0.989936	445.79*	197.37 (0.000)	133.36*	58.43 (0.00)					
At most 1	0.960702	312.42*	159.53 (0.000)	93.86*	52.36 (0.00)					
At most 2	0.915105	218.56*	125.61 (0.000)	71.52*	46.23 (0.00)					
At most 3	0.874540	147.03*	95.75 (0.000)	60.19*	40.07 (0.00)					
At most 4	0.640992	86.84*	69.81 (0.000)	29.70	33.87 (0.14)					
At most 5	0.612767	57.13*	47.85 (0.005)	27.51	27.58 (0.05)					
At most 6	0.485702	29.61	29.79 (0.032)	19.28	21.13 (0.08)					
At most 7	0.299610	10.33	15.49 (0.205)	10.32	14.26 (0.19)					
At most 8	0.000254	0.007	3.84 (0.069)	0.00	3.84 (0.93)					

*denotes rejection of the hypothesis at the 0.05 level

Trace test indicates 6 co-integrating equations at the 0.05 level

\$ Max-eigenvalue test indicates 4 co-integrating equations at the 0.05 level

Source: Authors Calculation

CONCLUDING REMARKS

In the context of inclusive growth and "Make in India" initiatives of the central government. The role of the state government of Haryana becomes very important for initiating various developmental strategies for the all-round development of the state. In the recent years, an increase in the public spending on various heads of social development has increased in Haryana. This paper examines both short-run and long-run relationship between economic growth and social sector development through human capital formation in Haryana. The major findings of the paper show that increased expenditure on social sector development has a strong and positive impact on growth of NSDP in Haryana. The results of the study also show that a significant relationship between growth and social sector development in the short-run (Granger causality result is significant). However, it suggests a long-run positive relation between the two (Johansen co-integration). The Ganger causality test identified that expenditure on social Security

Welfare (SSW) unidirectional (only) and others are statistically insignificant. Though govt. of Haryana invested for social sector development but it does not reach to the poor section of the people who are in root in the economy.

Therefore, Govt. of Haryana should focus on public investment in human capital i.e. expenditure on social sector development that will encourage to the growth of the economy.

ENDNOTES

- 1. It comprising of sub-sectors like education, health and medical care, housing, sanitation and water supply, etc.
- 2. Per capita income refers to the average income earned per person in a given area in a particular period of time. It is calculated by dividing the total income by total population.
- 3. Real per capita is adjusted with the inflation in a specific period of time.
- 4. When the variance of the residual is not constant, it makes difficult to precisely test the null hypothesis. For detail see Gujarati (2007), 3rd edition, chapter 11, p: 396-449.
- 5. A variable is said to be strongly stationary if its mean and variances are constant over the years and the covariance at each lag is constant. And it would be weak stationary if its mean and variances are constant over the years and the covariance at a constant lag is constant. For detail see Enders (2004).
- 6. Make in India, a type of Swadeshi movement covering 25 sectors of economy, was launched by the Government of India in 2014 to encourage companies to manufacture their products in India.
- 7. Sarva Shiksha Abhiyan (SSA) and Rashtriya Madhyamik Shiksha Abhiyan (RMSA) National Skills Qualifications Framework (NSQF), National Rural Health Mission (NRHM), Janani Shishu Suraksha Karyakram (JSSK), Janani Suraksha Yojana (JSY - GOI), Mukhiya Mantri Muft Ilaj Yojana (MMIY), Mukhya Mantri Anusuchit Jaati Nirmal Basti Yojana (MMAJNBY), Rural housing yojana like Priyadarshini Awaas Yojana (PAY), MGNREGS, Indiara Awas Yojana (IAY), National Rural Livelihood Mission (HSRLM), Rajiv Awas Yojana (RAY), Integrated Housing & Slum Devlopment Programme (IHSDP) and Swaran Jayanti Shahari Rozgar Yojana (SJSRY).

REFERENCES

- Sen, A. (1989). Development as capability expansion. In Sakiko FukudaParr and A K Sivakumar (eds). *Readings in Human Development*, 3-13.
- Baldacci, E., Clements, B., Gupta, S. & Cui, Q. (2008). Social spending human capital and growth in developing countries. *World Development*, *36*(8), 1317-1341.
- Benhabib, J. & Spiegel, M.M. (1994). The role of human capital in economic development: Evidence from crosscountry data. *Journal of Monetary Economics*, 34(2), 143-173.
- Bhat, R. & Jain, N. (2004). Analysis of public expenditure on health using state level data. Indian Institute of Management Ahmedabad.
- Culter, D., Deaton, A. & Lleras-Muney, A. (2005). *The Determinants of Mortality*, Working Paper, No. 11963. National bureau of economic research, Cambridge.
- Datt, G. & Ravallian, M. (1998a). Why have some Indian states done better than others at reducing rural poverty? *Economica*, February, 65(257), 17-38.
- Dickey, D.A. & Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American Statistical Association*, 74(366), 427-431.
- Duflo, E. (2001). Schooling and labour market consequences of school contruction in Indonesia: Evidence from an unusual policy experiment. *American Economic Review*, 91(4), 795-813.
- Enders, W. (2004). Applied econometric time series. Wiley, Second Edition.
- Engle, R.F. & Granger, C.W. (1987). Co-integration and error correction: Representation, estimation and testing. *Econometrica*, 55, 251-276.
- Gangal Vijay L.N. & Gupta, H. (2013). Public expenditure and economic growth a case study of India. *Global Journal of Management and Business Studies*, 3(2), 191-196.
- Gbesemete, K.P. & Gerdtham, U.G. (1992). Determinants of health care expenditures in Africa: A cross-sectional study. *World Development*, 20, 303-308.
- Goldstein, J.S. (1985). Basic human needs: the plateau curve. World Development, 13(5), 595-609.

- Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross spectral methods. *Econometrica*, 37, 424-438.
- Grossman, G. & Helpman. (1991). Innovation and growth in the global economy. Cambridge, MIT Press.
- Gujarati. (2007). Basic econometrics. Tata McGraw-Hill Education, 3rd edition, chapter 11, 396-449.
- Haddad, L., Alderman, H., Appleton, S., Song, L. & Yohannes, Y. (2003). Reducing child malnutrition: How far does income growth take us? *World Bank Economic Review*, *17*(1), 107-131.
- Haldar, S.K. & Mallik, G. (2006). Does human capital cause economic growth? A case study of India. *International Journal of Economic Sciences and Applied Research*, *3*(1), 7-25
- Hicks, N.L. (1979). Is there a trade-off between growth and basic needs? Finance and Development, 17(2), 17-20.
- Hitris T. & Posnett J. (1992). The determinants and effects of health expenditures in developed countries. *Journal of Health Economics*, *11*, 173-181.
- Hooda, S.K. (2013). Changing pattern of public expenditure on health in India: Issues and challenges. *ISID-PHFI Collaborative Research Centre*, Working Paper.
- Johansen, S. (1988). Statistical analysis of co-integration vectors. *Journal of Economic Dynamics and Control*, 12, 231-254.
- Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationary against the alternative of a unit root. *Journal of Econometrics*, 54, 1-3, 159-178.
- Lucas, R. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3-42.
- Mahal. & Ajay. (2000). Diet-linked chronic illness in India, 1995-1996: Estimates and economic consequences. Draft. New Delhi: National Council for Applied Economic Research.
- Mankiw, G.N., Romer, D. & Weil, D. (1992). A contribution to the empirics of economic growth. *Quarterly Journal* of Economics, 107(2), 407-437.
- Mohapatra, A.K. (2013). Enhancing human capabilities and augmenting economic growth through social sector development. *Asian-African Journal of Economics and Econometrics*, 13(2), 339-354.
- Nelson, R. & Phelps, E. (1966). Investment in humans, technological diffusion and economic growth. *American Economic Review*, 5(2), 69-75.
- Perron, P. (1989). The great crash, the oil price shock and the unit root hypothesis. *Econometrica*, 57(6), 1361-1401.
- Quah, D. & Rauch, J.E. (1990). Openness and the rate of economic growth. *Mimeo University of California*, San Diego.
- Ram, R. (1985). The role of real income level and income distribution in fulfilment of basic needs. *World Development*, 3(5), 589-594.
- Rivera-Batiz, L.A. & Romer, P.M. (1991). Economic integration and endogenous growth. Quarterly Journal of Economics, May.
- Romer P.M. (1989). Capital accumulation in the theory of long run growth. In Barro R.J. (ed.), Modern Business Cycle Theory.
- Romer, P. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002-1037.
- Romer, P.M. (1990). Endogenous technological change. Journal of Political Economy, 98.
- Schultz, T.P. (1997). Assessing the productive benefits of nutrition and health: anintegrated human capital approach. *Journal of Econometrics*, 77(1), 141-158.
- Schultz, T.P. (2000). Productive benefits of improving health: Evidence from low income countries. *Yale University Mimeo*.
- Sen, A. (2000). A decade of human development. Journal of Human Development, 1(1).
- Strauss, J. & Thomas, D. (1995). Human resources: empirical modelling of households and family decisions. In J. Behrman and T.N. Srinivasan (Eds.): *Hand Book of Development Economics*, 3A, 1883-2023, Elsevier, Amsterdam.
- Strauss, J. & Thomas, D. (1998). Health, nutrition and economic development. *Journal of Economic Literature*, 36(2), 766-817.
- Streeten, P. (1981). First things first. Oxford University Press, London.
- UNDP. (1990). Human Development Report, Oxford University Press.

ANNEXURE 1									
LNSDP non-stationary at Level	LNSDP stationary at First difference								
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob								
1 0.909 0.909 28.166 0.000 1 1 0.909 0.909 28.166 0.000 1 1 2 0.814 -0.072 51.512 0.000 1 1 3 0.711 -0.096 69.962 0.000 1 1 4 0.620 0.014 84.537 0.000 1 1 5 0.527 -0.076 95.448 0.000 1 1 6 0.348 -0.035 103.31 0.000 1 1 1 8 0.258 -0.054 111.40 0.000 1 1 1 10 0.089 -0.051 113.36 0.000 1 1 1 10 0.029 113.33 0.000 1 1 1 12 -0.057 -0.029 113.33 0.000 1 1 1 12 -0.057 -0.029 113.33 0.000 1 1 1 12 -0.133 -0.029 113.33	I I 1 -0.249 -0.249 2.0603 0.151 I I 2 0.079 0.018 2.2755 0.321 I I I 3 0.030 0.057 2.3067 0.511 I I I 3 0.030 0.057 2.3067 0.511 I I I I 3 0.030 0.079 2.6666 0.622 I I I I 5 0.143 0.104 3.4129 0.637 I I I I I 6 0.201 0.291 5.0343 0.539 I I I I I 8 0.169 0.079 7.3840 0.486 I I I I 10 0.001 -0.099 9.4216 0.399 I I I I 11 0.016 -0.029 9.4349 0.582 I I								
LESAC non-stationary at Level	LESAC non-stationary at Level								
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob								
1 0.904 0.904 27.852 0.000 1 1 0.904 0.904 27.852 0.000 1 1 2 0.803 -0.078 50.573 0.000 1 1 3 0.705 -0.377 68.720 0.000 1 1 4 0.605 -0.068 82.601 0.000 1 1 1 5 0.507 -0.054 92.714 0.000 1 1 1 6 0.407 -0.056 103.56 0.000 1 1 1 7 0.309 -0.056 103.56 0.000 1 1 1 1 0.079 107.12 0.000 1 1 1 10.079 -0.029 107.12 0.000 1 1 1 1 10.077 -0.029 107.13 0.000 1 1 1 1.017 -0.029 107.13 0.000	1 1 0.295 0.295 2.8720 0.090 1 1 2 0.039 -0.053 2.9234 0.232 1 1 2 0.039 -0.053 2.9234 0.232 1 1 3 0.088 0.100 3.1986 0.362 1 1 4 -0.214 -0.298 4.8940 0.298 1 1 5 -0.455 -0.354 12.827 0.025 1 1 6 -0.406 -0.298 19.429 0.003 1 1 1 8 -0.147 -0.038 22.748 0.004 1 1 0 2.248 0.001 12.55 0.004 1 1 0 0.234 0.114 25.556 0.005 1 1 0.0234 0.011 25.355 0.000 1 1 1 0.448 0.214 35.591 0.001 1								
LFWMPH non-stationary at Level	LFWMPH stationary at first difference								
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob								
1 0.903 0.903 27.815 0.000 1 1 0.903 0.903 27.815 0.000 1 1 2 0.799 -0.091 50.331 0.000 1 1 3 0.697 -0.046 68.064 0.000 1 1 4 0.592 -0.072 81.360 0.000 1 1 4 0.592 -0.073 81.360 0.000 1 1 1 5 0.491 -0.043 97.192 0.000 1 1 1 6 0.394 -0.043 97.192 0.000 1 1 1 1 8 0.214 0.009 102.96 0.000 1 1 1 1 10 0.078 0.020 104.15 0.000 1 1 1 1 10 0.078 0.026 104.24 0.000 1 1 1 1 <td>I I I 0.073 0.073 0.1766 0.674 I I I 0.077 0.184 1.252 0.534 I I I 3 0.135 0.110 1.8978 0.594 I I I I 4 0.243 0.241 4.0792 0.395 I I I I I 0.181 0.694 0.098 I I I I I 0.184 0.039 9.6117 0.087 I I I I I 0.181 1.094 0.098 I I I I I 0.005 18.504 0.029 I I I I I I 0.0181 12.907 0.097 I I I I I 0.0305 18.12.2324 0.018 I I I I I 0.025 26.183 0.011 I I I I I I 12 0.026<!--</td--></td>	I I I 0.073 0.073 0.1766 0.674 I I I 0.077 0.184 1.252 0.534 I I I 3 0.135 0.110 1.8978 0.594 I I I I 4 0.243 0.241 4.0792 0.395 I I I I I 0.181 0.694 0.098 I I I I I 0.184 0.039 9.6117 0.087 I I I I I 0.181 1.094 0.098 I I I I I 0.005 18.504 0.029 I I I I I I 0.0181 12.907 0.097 I I I I I 0.0305 18.12.2324 0.018 I I I I I 0.025 26.183 0.011 I I I I I I 12 0.026 </td								
LWSSO non-stationary at level	LWSSO stationary at first difference								
	Autocontention Particular (Contention) AC PAC Q-Stat Prob I I I I 1 0.054 0.0962 0.756								
1 1 2 0.821 -0.097 52.286 0.000 1 1 3 0.718 -0.067 52.286 0.000 1 1 4 0.610 -0.084 85.188 0.000 1 1 5 0.507 -0.035 95.284 0.000 1 1 5 0.507 -0.035 95.284 0.000 1 1 6 0.412 -0.010 10.224 0.000 1 1 1 1 8.0233 109.02 0.000 1 1 1 10 0.057 0.056 110.06 0.000 1 1 1 10 0.057 110.38 0.000 1 1 1 12 0.047 0.132 117.61 0.000 1 1 1 14 0.137 0.137.2 0.000 1 1 1 12 0.247 0.023 117	1 1 2 0.115 0.118 0.5502 0.780 3 0.180 0.170 1.7030 0.686 4 4 0.004 0.000 1.7033 0.780 5 0.170 0.137 2.8124 0.729 6 0.259 0.231 5.5505 0.481 7 0.070 0.060 5.7074 0.574 8 1 1 7 0.070 0.866 1 1 1 7 0.070 0.060 5.7074 1 1 1 0.0171 0.129 9.8242 0.365 1 1 0.095 0.189 10.260 0.418 1 1 0.112 0.033 0.141 10.954 0.533 1 1 14 0.272 0.716 15.713 0.331 1 1 1 0.272 0.716 15.713 0.331 1 1 1								

	LLLW stationary at first difference
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob
1 0.903 0.903 27.812 0.000 1 2 0.799 -0.088 50.353 0.000 1 1 3 0.701 -0.027 68.307 0.000 1 1 4 0.603 -0.068 20.664 0.000 1 1 1 5 0.508 -0.038 92.231 0.000 1 1 1 5 0.508 -0.038 92.231 0.000 1 1 1 6 0.409 -0.038 92.231 0.000 1 1 1 7 0.314 -0.021 105.82 0.000 1 1 1 9 0.154 -0.016 106.73 0.000 1 1 1 1 0.009 107.04 0.000 1 1 1 1 10 0.027 107.74 0.000 1 1 1 1 13 0.100	I I I 0.071 0.071 0.1663 0.683 I I I 2 0.114 0.120 0.6125 0.736 I I I I 3 0.040 0.022 0.6881 0.881 I I I I I 4 0.041 0.033 0.7293 0.948 I I I I I 6 0.191 0.160 3.8526 0.697 I I I I I I 0.035 0.113 3.9027 0.791 I I I I I I 0.0667 0.116 0.113 5.0022 0.3327 0.791 I I I I I I 0.355 0.116 0.113 5.0022 0.3821 I I I I I 10 0.067 0.115 5.2173 0.876 I I I I I 10 0.067 0.015 5.2173 0.876
LSSW non-stationary at level	LSSW stationary at first difference
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob
Image: Second	I I I I 0.175 0.175 1.0128 0.314 I I I I 0.175 0.175 1.0128 0.314 I I I I 0.175 0.084 1.010 0.577 I I I 0.175 0.029 3.2281 0.358 I I I I 4 0.110 0.003 3.6727 0.452 I I I I 5 0.002 0.005 3.6728 0.597 I I I I 6 0.005 0.623 3.6739 0.721 I I I I 7 0.073 0.054 3.8960 0.782 I I I I 9 0.013 0.606 5.6098 0.778 I I I I 0.088 0.104 5.9774 0.817 I I I I 0.068 0.104 5.974 0.817 I I I I
LHUD non-stationary at level	LHUD stationary at first difference
Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Autocorrelation Partial Correlation AC PAC Q-Stat Prob
1 0.900 0.900 27.615 0.000	
1 1 1 2 0.733 -0.086 49.821 0.000 1 1 1 3 0.681 -0.086 66.780 0.000 1 1 1 4 0.553 -0.967 78.809 0.000 1 1 1 5 0.454 -0.026 86.935 0.000 1 1 1 6 0.361 0.007 92.264 0.000 1 1 1 7 7274 -0.41 95.455 0.000 1 1 1 1 9 0.81 -0.47 97.104 0.000 1 1 1 10 0.025 0.118 97.133 0.000 1 1 1 10.017 0.019 97.149 0.000 1 1 1 12 -0.44 0.003 97.255 0.000 1 1 1 13 -0.082 -0.141 97.634 0.000 1 1 1 1 15 -0.147 0.042 </td <td>I I I 2 -0.204 -0.274 2.0488 0.206 I I 3 -0.50 0.004 2.7370 0.434 I I I 4 0.065 -0.003 2.8920 0.576 I I I 5 0.235 5.0102 0.415 I I I 6 -0.048 -0.094 5.1008 0.531 I I I I 8 -0.057 -0.043 6.3743 0.497 I I I I 9 -0.105 -0.176 7.0175 0.635 I I I I 0.4089 -0.1407 7.3940 0.6378 I I I 1 0.099 -0.160 7.3940 0.638 I I I 1 10 -0.089 -0.145 7.8873 0.723 I I I 13 0.154 0.115 10.792 0.628 I I I 14 -0.141 -</td>	I I I 2 -0.204 -0.274 2.0488 0.206 I I 3 -0.50 0.004 2.7370 0.434 I I I 4 0.065 -0.003 2.8920 0.576 I I I 5 0.235 5.0102 0.415 I I I 6 -0.048 -0.094 5.1008 0.531 I I I I 8 -0.057 -0.043 6.3743 0.497 I I I I 9 -0.105 -0.176 7.0175 0.635 I I I I 0.4089 -0.1407 7.3940 0.6378 I I I 1 0.099 -0.160 7.3940 0.638 I I I 1 10 -0.089 -0.145 7.8873 0.723 I I I 13 0.154 0.115 10.792 0.628 I I I 14 -0.141 -
1 1 1 2 0.733 -0.086 49.821 0.000 1 1 1 3 0.681 -0.086 66.780 0.000 1 1 1 5 0.454 -0.26 66.935 0.000 1 1 1 5 0.454 -0.26 66.935 0.000 1 1 6 0.361 0.07 92.64 0.000 1 1 1 7 0.274 -0.041 95.455 0.000 1 1 1 9 0.081 -0.047 97.104 0.000 1 1 1 10 0.225 0.118 97.133 0.000 1 1 1 -0.017 0.019 97.149 0.000 1 1 1 -0.017 0.019 97.149 0.000 1 1 1 -0.119 -0.058 98.492 0.000 1 1 1 1 -0.147 0.042 99.864 0.000 1	1 1 2 -0.204 -0.274 2.0483 0.200 1 1 3 -0.50 0.004 2.737 0.434 1 1 4 0.065 -0.003 2.8920 0.576 1 1 5 0.235 5.0102 0.415 1 1 1 6 -0.048 -0.094 5.108 0.531 1 1 1 1 8 -0.57 -0.080 6.5183 0.589 1 1 1 1 8 -0.057 -0.080 6.5183 0.589 1 1 1 1 0.089 -0.160 7.304 0.638 1 1 1 0.099 -0.160 7.304 0.638 1 1 1 0.099 -0.160 7.304 0.638 1 1 1 10 -0.089 -0.160 7.304 0.628 1 1 1 1 10.099 -0.167 7.304 0.628 1 1 <
1 1 2 0.733 -0.086 49.821 0.000 1 1 3 0.681 -0.086 66.780 0.000 1 1 4 0.553 -0.086 68.935 0.000 1 1 5 0.454 -0.026 86.935 0.000 1 1 6 0.361 0.007 92.264 0.000 1 1 1 6 0.361 0.007 92.264 0.000 1 1 1 7 0.274 -0.41 95.455 0.000 1 1 1 1 9 0.81 -0.47 97.104 0.000 1 1 1 10 0.025 0.118 97.133 0.000 1 1 1 10 0.025 0.118 97.133 0.000 1 1 1 1.017 0.19 97.149 0.000 1 1 1.017 0.19 97.149 0.000 1 1 1.017 0.19	1 1 2 0.004 0.074 2.0488 0.200 1 1 3 0.050 0.004 2.7370 0.434 1 1 4 0.065 0.004 2.7370 0.434 1 1 4 0.065 0.004 2.7370 0.434 1 1 1 4 0.065 0.004 2.7370 0.434 1 1 1 6 0.484 0.094 5.1008 0.531 1 1 1 7 -0.175 -0.043 6.3743 0.497 1 1 1 8 -0.057 -0.080 6.5183 0.589 1 1 1 0.059 -0.176 7.0175 0.635 1 1 1 0.009 -0.167 7.8873 0.723 1 1 1 0.171 0.229 9.4464 0.664 1 1 1 1.0154 1.01792 0.628 1 1 1.041 -0.002 1.1985 0

LRANC non-stationary at level						LRA	NC stationary a	ıt first dif	ferenc	ce		
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	A	utocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.599 2 0.569 3 0.493 4 0.523 5 0.443 6 0.252 7 0.319 8 0.226 9 0.148 10 0.005 11 0.053 12 0.006 13 -0.089 14 -0.122 15 -0.180 16 -0.265	0.599 0.328 0.118 0.201 0.016 -0.286 0.123 -0.057 -0.158 -0.136 0.103 -0.068 -0.073 0.027 -0.119 -0.286	12.228 23.643 32.511 42.866 50.573 53.176 57.509 59.779 60.803 60.945 60.945 60.947 61.399 62.299 64.363 69.156	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				1 -0.566 2 0.119 3 -0.098 4 -0.012 5 0.268 6 -0.440 7 0.306 8 -0.079 9 0.057 10 -0.055 11 -0.025 12 0.082 13 -0.123 14 0.073 15 0.079 16 -0.089	-0.566 -0.296 -0.288 -0.344 -0.331 -0.217 -0.054 -0.036 -0.099 0.092 -0.036 -0.138 -0.076 0.183 0.076	10.598 11.080 11.423 11.428 14.176 21.925 25.826 26.099 26.247 26.390 26.422 26.777 27.629 27.950 28.348 28.894	0.001 0.004 0.010 0.022 0.015 0.001 0.001 0.001 0.002 0.003 0.006 0.008 0.008 0.010 0.014 0.014

Source: Plotted by using data from EPW Research Foundation

Annexure 2 DESCRIPTIVE STATISTICS										
Statistics	LNSD	LESA	LFWMP	LHU	LLL	LSS	LWS	LWSS	LRAN	
	Р	С	Η	D	W	W	S	0	С	
Mean	13.46	9.45	8.03	6.87	6.27	8.11	8.15	6.19	6.46	
Median	13.36	9.50	8.03	6.49	6.30	8.24	8.17	5.83	6.77	
Maximum	14.51	11.33	9.95	10.02	7.81	10.16	10.41	8.12	8.92	
Minimum	12.55	7.35	6.34	4.60	4.37	4.98	5.92	4.70	3.30	
Std. Dev.	0.62	1.23	1.11	1.75	1.07	1.41	1.46	1.14	1.40	
Skewness	0.24	0.03	0.16	0.58	-0.06	-0.30	-0.17	0.45	-0.28	
Kurtosis	1.78	1.86	1.93	2.10	1.88	2.57	1.76	1.76	2.29	
Jarque-Bera	2.22	1.69	1.63	2.77	1.64	0.69	2.13	3.03	1.06	
Probability	0.33	0.43	0.44	0.25	0.44	0.71	0.34	0.22	0.59	
Sum	417.11	292.82	249.00	213.1	194.46	251.4	252.7	192.01	200.14	
				1		5	6			
Sum of square	11.42	45.21	37.19	91.56	34.56	59.76	63.83	39.22	58.87	
deviation										
Observations	31	31	31	31	31	31	31	31	31	

Source: Author's Calculation

Annexure 3 PEARSON'S COEFFICIENTS OF CORRELATION										
Variables LESAC LFWMPH LHUD LLLW LSSW LWSS LWSSO LRANC										
LNSDP	0.99	0.99	0.98	0.98	0.97	0.97	0.98	0.86		
Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000										

Correlation is significant at the 0.01 (2-tailed) **Source**: Authors Calculation