THE ECONOMIC DIVERSIFICATION IN SAUDI ARABIA UNDER THE STRATEGIC VISION 2030

Abdelkrim A. Guendouz, Arab Monetary Fund Saidi M. Ouassaf, King Faisal University

ABSTRACT

The purpose of this paper is to investigate the major macroeconomic factors affecting economic diversification in Saudi Arabia, and to investigate and analyze the strategies engaged in diversifying Saudi Arabia's economy as well as to adjudge the level of success that has been achieved away from the export of oil. The empirical study carried out to analyze the diversification of the Saudi Arabian economy, using multiple regression analysis for the period 1991-2016. The results suggest a direct correlation between the economic diversification index and The Gross Domestic Product (GDP), The Gross Fixed Capital Formation (GFCF), and the percentage contribution of Foreign Direct Investment to the GDP (FDI). The non-oil GDP to GDP (NOGDP/GDP), the percentage contribution of Non-Oil Government Revenues as a proportion of total government revenues (NOGOV), and the percentage contribution of the private sector to GDP (PRIV) indicated a negative correlation with the diversification. We believe that the findings could provide a metric that policymakers can use to establish the necessary strategies to gauge the targeted economic diversity as a pillar of the Vision 2030, and to ensure a strong and sustainable economy.

Keywords: Diversification, Economic Diversity, Saudi Arabia, 2030 Vision, Economic Development, Herfindahl Hirschman Index.

INTRODUCTION

Although considered as the largest economy in the Middle East region and a member of the Group of Twenty (G20), the Saudi economy still encounters many challenges in a turbulent regional economic environment. Its dependence on a limited source of income amongst which oil is the ranked the highest is one of the most severe challenges facing her economy. The export of energy products constitutes over 90% of all Saudi exports. A situation that puts the economy into dilemma: maintaining and diversifying its economy and its export markets while countering an increasing competitor in the energy markets. Although, the increase of oil prices and revenue (the period of 2003-2013) enhanced the creditworthiness of the Saudi economy and improved the welfare of its people, it impact have not created an economy that is resilient to economic and financial shocks. Thus, in the long term, the Kingdom's economy cannot increase beyond the revenues from it oil.

To overcome this vulnerable economic situation, the 2030 vision was adopted, and it emphasized on economic diversification as a vital step towards ensuring economic sustainability in Saudi Arabia. Even though, the nine-quintal programs tend to diversify the economy, none of them better established the pillars of such shift as done in the vision 2030, as mentioned clearly in its goals: "To raise the share of non-oil exports in non-oil GDP from 16% to 50%" (Vision 2030 kingdom of Saudi Arabia). With almost four years of the vision already gone, and more than one

decade still at the hand, there is need for the policymakers to reassess the goals of the vision 2030, and to decide the achievability within the period, or make further adjustments and correction to the initial target.

There are only a few researches that has used quantitative models to analyze the diversity of the Saudi economy, especially after the adoption of the 2030 Vision.

This paper makes a detailed contribution for understanding the current and future trends and the shifts of the Saudi economy in several ways. First, we measured and analyzed the diversification of the Saudi's economy and integrated the vision 2030 as a road map towards the new economy. Secondly, we used the results of the analysis to propose a framework for injecting new dynamism into the economy.

The paper is structured as follows: the next session discusses the theoretical background of economic diversification with emphasis on its interrelation with economic growth. Section 3 reviews the recent literature of economic diversification in Saudi Arabia especially in empirical studies. Section 4 presents an overview of the data collection, the variables and the empirical model including the main discussion of the results. Section 5 concludes and reveals some of the policy implications.

THEORETICAL BACKGROUND

Economic Diversification, Source Curse, and Economic Growth

Depending on the context, economic diversification can be used in several perspectives. From an income perspective, it means the diversity of income sources. In production, it shows the production process of a growing range of economic outputs. It also refers to the complexity and diversity of markets for exports when used with respect to foreign trades. In this paper, by using the term economic diversification, we mean first, income diversity, which can be expressed as the variation of income across different income sources, and that a country should not depend upon a unique or a small number of sources for its income. Secondly, a country that has a strong manufacturing base, a vibrant services sector, a burgeoning natural resource sector, and a welldeveloped agricultural sector that is quite diverse.

According to literatures, there are two types of diversification: the vertical and the Horizontal diversification. From a corporate view, horizontal diversification is the same as Integration, in which two similar or dissimilar businesses are merged together. It enlarges the scope of operations and, thus, provides economies of scale. In vertical diversification, the same business line joins with its backward or forward linkages. New products are complementary to the existing products, and although, it enlarges the operations at different stages of production, it does not provide economies of scale, however, it leads to specialization in production and sales. In macroeconomics, the vertical and horizontal diversification is expressed as the extensive and the intensive margin. The former means diversifying the range of traded goods; in the latter, traded volumes of old goods are increased (Persson, 2013; Persson et al., 2016).

According to (Gylfason, 2017), the benefits of economic diversification on efficiency and growth can be viewed through the widely observed inverse relationship between heavy dependence on a few natural resources and the long-run economic growth of some countries, sometimes referred to as 'resource curse'. This relationship is consistent with the view that economic diversification is good for long-run growth.

In the economic literatures, it is expected that the more economically complex a country, the more likely that it will have a low level of volatility in its GDP. This is not so far from the idea

of diversification in financial theory (Portfolio theory), in which unsystematic risk is reduced or eliminated by diversification of assets within the portfolio. This will end up reducing the overall volatility of the portfolio.

Having a diverse economy has long been thought to play a key role in sustainable economies, and accordingly has enhanced the nation's standard of living by creating wealth and jobs, encouraging the development of new knowledge and technology, and helping to ensure a stable political climate. For these reasons, a diverse economy is the goal of every nation in the world.

Saudi Economy in Light of 2030 Vision: What Can Policymakers Do?

With its \$684 Billion USD Gross Domestic Products by the end of 2017, Saudi Arabian economy is the largest in the MENA region and one of the largest economies in the world. However, some economic factors had made the Saudi economy to be ranked among developing economies of the world, among these factors is it dependence on oil, and the strong government control over major economic activities. Given the importance of the oil sector and the uncertainty in the oil markets, fluctuations in the oil price will continuously impact seasonal disturbance to the Saudi's economy. The main cause of such fluctuation which also faces other oil-exporting countries, is their lack of price control, which thus, represents a major threat to sustained economic growth. Therefore, economic diversification is crucially important for these countries in ensuring their achievement of sustainable economic growth. In fact, there is an increasing number of empirical studies supporting undesirable effects of oil fluctuations on macroeconomic variables (Mehrara, 2008)

Lately the Saudi government has acknowledged that the objective of long-term economic sustainability is difficult to attain with dependence on a single or limited source of revenue. Therefore, a long-term economic restructuring had been started with the aim to overcome the dependence on oil exports and to accelerate structural diversification.

In fact, since the first development plan in 1970, economic diversification has always been a dominant objective of all the development plans; however, the dependence on oil had remained critical, and as a result, the decline in oil prices in the last few years has significantly affected the government's budget. For instance, there was a significant reduction in fuel subsidy, salaries of government employees and scholarship programs, etc.

Specificity of Economic Diversification for Saudi Economy

When the Saudi Arabian's government unveiled the Saudi Vision 2030, it was considered as a long-term economic blueprint of Saudi Arabia. The Vision is a package of social and economic policies that are designed to free the kingdom from its dependence on oil exports and to build a prosperous and sustainable economic future by focusing on the country's strength and policies (Vision 2030 kingdom of Saudi Arabia).

The Vision is built around three themes: a vibrant society, a thriving economy and an ambitious nation. By 2030, the SMEs is estimated to account for 35% of GDP from the current 20%, and the private sectors will contribute 65% of the GDP from its present 40%. Also, the vision targets to increase foreign direct investment from 3.8% to the international level of 5.7% of GDP.

A very important economic goal in direct relation with this study is raising the share of non-oil exports in non-oil GDP from 16% to 50% and increasing the non-oil government revenues

from USD 45 Billion to USD 267 Billion. These propositions if achieved would advance Saudi Arabia's economy from currently the 19th largest economy in the world into the top 15.

The Saudi economy has huge potentials to achieve the goals for vision 2030. According to (McKinsey 2015), by 2030 the GDP could double again after its first jump during the period from 2003-2013. It is estimated that eight sectors other than the oil sector will generate more than 60% of the growth and create jobs; these sectors are Mining and Metals, Petrochemicals, Manufacturing, Retail and wholesale trade, Tourism and hospitality, Finance, Construction, Health Care. The important factors that the policymakers should take into consideration are: First, the diversification must be outside oil, that is, the expansion requires activities outside the oil sector. Besides this, it is necessary to spend more on human capital, education, training and health to the extent that they should contribute to higher output and productivity. Secondly and most importantly, the diversification should be regarded as a dynamic concept, which means the process should cover both the short- and long-term objectives of economic diversification (i.e. In the long run the share of oil revenues in GDP should not decrease because of the depletion of oil; but more importantly because of the growth in non-oil GDP). Thirdly, the Gross Domestic Product (GDP) should be distributed across a wide variety of economic sectors, such as agriculture or manufacturing, service.

LITERATURE REVIEW

The determinants of economic diversification and the interrelationships between economic diversification and macroeconomic variables (e.g. economic growth) are discussed in different ways in literatures.

Economic diversification is critical for the creation of a sustainable economy (Sohail, 2012). Having a diverse economy based on an array of sectors plays a key role in the sustainability of an economy. According to (Gozgor & Can, 2016); increasing the product diversity of export will help to stabilize the export revenues and to spur earnings from exports. In short, the product diversification of exports really matters in other to avoid external shocks and to sustain economic growth.

One of the well-researched area of diversification is the relation of diversification with economic growth. A trend of research in this field is in testing the export-led growth hypothesis. According to the export-led growth hypothesis, an expansion in exports leads to an increase in output, and this will result in a multiplier effect to promote economic growth. Therefore, some researchers empirically tested whether such mechanism exists in a country with respect to the relationship between the diversification of exports and the real income growth. (Abosedra & Tang, 2018; Ali & Li, 2018; Konstantakopoulou, 2017; Kristjanpoller et al., 2016; Salam & Egeli, 2017)

According (Aker & Aghaei 2019), there is a strong association between economic diversification and development and export diversification is a by-product of economic diversification.

Another important trend in relation to diversification in literatures is the "Resource Curse". According to this viewpoint, although natural resources are a blessing to any country, it can become a curse when solely relied on as the main sources of income. (Elheddad, 2016) examined whether the presence of natural resources discouraged foreign direct investment (FDI) or not in GCC countries, using panel data analysis for six oil dependent countries during 1980-2013 and applying several econometrics techniques. He suggests that natural resources measured by oil rents have a negative association with FDI inflows; this negative impact is even more robust when other determinants of FDI are included.

In an unprecedented study led by (Abouchakra et al., 2008) in GCC countries, G7, and some established economies, the study identified a clear link between economic diversification and sustainable growth. It also showed that diversification could reduce the economic volatility by increasing real activity performance, and due to this association between the level of diversification and economic growth, it is beneficial to investigate the factors influencing economic growth as potential elements that affect the level of economic diversification.

With regards to Saudi Arabia, there are a few papers that have used quantitative models to analyze the economic diversification. In a recent research to study economic diversification in Saudi Arabia by (Yamada, 2018), he researcher argued that diversification in Saudi Arabia to date has largely involved "production with rentier characteristics" - a mode of production that relies on oil-driven advantages such as energy- and capital-abundance and foreign labor. The kingdom's previous attempts to invest in human capital development in order to create labor-intensive sectors for local citizens were hampered by institutional fragmentation in the education sector and the legacy of rentierism. While the current government is integrating the school system and training programs, capacity building remains the major challenge in the workforce of Saudi Arabia.

(Banafea & Ibnrubbian, 2018) in their work emphasized the efforts of the Saudi government to diversify the economy using a descriptive analysis through nine development plans covering 45 years period (from 1970 to 2014). The relationship between Instability of private gross domestic product and oil price variance, and the relative contribution of private and public sectors to GDP were used as economic diversity measures. The investigated concluded that only in the last two development plans has the Saudi government achieved some success in moving towards diversification, although the process of diversification was slow-paced. The research suggested there should be improvements in the legislative framework to stimulate the private sector as the main pillar of economic diversification. According to (Albassam, 2015), even though the Saudi governments have issued ten development plans since 1970, with the view of economic diversification; oil is still the main revenue driving the economy. The study examines the government's efforts to diversify the economy using four variables: oil share of gross domestic product (GDP), share of private sector in GDP, oil exports as a percentage of the country's exports, and oil revenues as a percentage of total revenues. The results showed there is an urgent need to fully consider pursuit of economic diversification as a tool for better governance. Furthermore, (Algowear Almestneer, 2018) investigated the several factors that might enhance Saudi Arabia's independence from Crude oil as the only source of income and thus, engender economic diversity of its sources of revenue. The study also constructed a tailored diversification model of the Saudi Economy. The model provides a better rationale in designing the Kingdom's trade policies and one-step forward to diversify the Saudi's economy by stimulating non-oil sectors through trade openness.

Study by (Alghamedi, 2014 discusses the heavy dependence of Saudi Arabia on oil revenue. Heavy dependence on oil income at the exclusion of developing other sector that could boost national revenue is a risk, and threatens not only Saudi Arabia's economy, but also that of other Gulf countries. Although there have been several attempts in the last three decades to diversify the sources of revenue, there seem to be no significant changes. The main reasons contributing to the lack of diversification are; high entrance barriers for new businesses, government bureaucracy, and lack of commitment by the government; as a result high unemployment rate has pervaded Saudi Arabia.

According to (Khorsheed, 2015), Saudi Arabia represents a rare case in which capital factor formation does not impose any constraint on development. The kingdom has focused on

technology transfer to compensate for a paucity of indigenous technological capabilities. Since mid-2003, Saudi Arabia has experienced a strong economic performance which is primarily due to a combination of high oil prices, increased oil production and earning from oil-based export. Increasing demand for oil in addition to the structural reforms and stable macroeconomic policymaking, has enabled a sustained growth momentum. However, despite the several attempts at economic diversification, the Saudi economy still remain heavily dependent on oil and petroleum-related industries including petrochemicals and petroleum refining.

DATA AND METHODOLOGY

Variables and Data

Although diversification measures have evolved over the years and economists have developed many indexes for measuring Economic Diversification, there is no consensus among them on which is the most adequate, since each index has its strengths and weaknesses. Economic diversity measures include the Herfindahl-Hirschman Index (HHI), the Coefficient of variation of sector shares, the max-min spread, the log-variance of sector shares (LOG-VAR), and the Gini coefficient for the inequality of sector shares.

To measure the level of economic diversification in Saudi Arabia, we used the Normalized Hirschman Index. This is done using the following formula:

$$NHI = \frac{\sqrt{\sum_{i}^{N} \frac{x_i}{X}} - \sqrt{\frac{1}{N}}}{1 - \sqrt{\frac{1}{N}}}$$

Where: (x_i) is the added value of the i^{th} sector. The sectors that are included to construct the index are (Agriculture, Forestry & Fishing), (Mining & Quarrying-Other than Petroleum & Natural Gas), (Manufacturing-Other than Petroleum Refining), (Electricity, Gas and Water), (Construction), (Wholesale & Retail Trade, Restaurants & hotels), (Transport, Storage & Communication), (Finance, Insurance, Real Estate & Business Services, Ownership of Dwellings), (Community, Social & Personal Services), (Producers of Government Services), (OIL and related sectors).

(X) is the GDP of Saudi Arabia. Therefore, xi/X is the i^{th} sector's value-added share of the country's total added value of all sectors. N is the total number of economic sectors. The value of the index ranges between zero and one. As the value of the index approaches to one, the economy of the country becomes less diversified.

The NHI is a used as a measure of concentration, where larger values typically indicate more concentration, which means maximum diversification in the NHI exists when revenues are evenly distributed among each revenue source.

We chose the dependent variables in a manner that we believe it applied to the Saudi Arabian economy. Table 1 shows the variables of the study and its description.

Table 1 DEFINITION AND MEASUREMENT OF VARIABLES								
Variables	Definition	Measurement						
Dependent Variable								

The Economic Diversification Index (Normalized Herfinadhl-Heirscman Index)	Measures the concentration of the economy toward a sector	$NHHI = \frac{\sum_{i}^{N} \frac{x_i}{X} - \frac{1}{N}}{1 - \frac{1}{N}}$
Independent Variables		
The Gross Domestic Product (GDP)	Indicates the size of the economy.	The natural logarithm of GDP: Ln (GDP)
The non-oil GDP to GDP (NOGDP/GDP)	The Percentage contribution of non-oil sector to GDP.	$NOGDP/GDP = \frac{Non \ Oil \ GDP}{GDP}$
the percentage contribution of non- oil export-to-total exports (NOExp/Exp)	which indicates diversification when non-oil exports increase	$NOExp/Exp = \frac{Non \ Oil \ Exports}{Total \ Exports}$
The Total Imports to GDP (IMP)	Imports of goods and services as a percentage of GDP.	$IMP = \frac{Total \ IMports}{GDP}$
The percentage contribution of Non- Oil Government Revenues as a proportion of total government revenues (NOGOV)	Indicates the degree of government revenues dependency on oil.	$= \frac{\text{NOGOV}}{\text{Government Revenues}}$
The Gross Fixed Capital Formation (GFCF)	a measure of gross net investment (acquisitions less disposals) in fixed capital assets by enterprises, government and households within the domestic economy, during an accounting period such as a quarter or a year	The natural logarithm of GFCF: Ln (GFCF)
The percentage contribution of Foreign Direct Investment to the GDP (FDI)	Measures the total level of direct investment at a given point in time, usually the end of a quarter or end of a year.	$FDI = \frac{Foreign\ Direc\ Investment}{GDP}$
The GDP Growth at constant prices (2010=100)	It shows how fast the country's economy is growing. It compares real GDP from one year to the next.	The growth Rate of GDP
The percentage contribution of the private sector to GDP (PRIV)	Measures the Private Sector's Contribution as a percent of GDP	$PRIV = \frac{Volum \ of \ Private \ Sector}{GDP}$

To achieve the objective of the study, secondary time series data from the period of 1996 to 2016 was obtained from the General Authority for Statistics. The next part of this section shows the results of this study and discussion.

FINDINGS AND DISCUSSIONS

The Concentration of The Saudi Economy Toward A Sector: Using the Economic

Diversification Index (NHHI)

Table 2 THE DESCRIPTIVE STATISTICS FOR NHHI									
Variable	Minimum	Maximum	Mean	Std. Deviation	c.v. %				
NHHI	0.05260	0.23640	0.1177577	0.05131694	43.5784				

The NHHI of each Saudi economy under study, was drawn up during the period from 1991-2016 Table 2 & Figure 1.

FIGURE 1 THE NHHI OF EACH SAUDI ECONOMY UNDER STUDY FROM THE PERIOD OF 1991-2016

Clustering the Observations of NHHI

We used clustering or classification to decide which two or more populations an observation or set of observations belongs to. Many clustering algorithms can be used for the classification, here we used the K- Means Clustering and obtained the following Table 3 results:

Table 3								
CLASSIFICATIONS OF THE TYPE OF THE ECONOMY'S CONCENTRATION IN SAUDI								
The concentration	Frequency	Percent	Mean of NHHI					
high	19	73.1	0.09095					
middle	7	26.9	0.19053					
Total	26	100.0	0.1177					

The Predictive Variables

Ratios provide a relatively simple means of examining the concentration of the Saudi's economy. The predictive variables are the financial ratios for concentration of the Saudi economy, and are defined as follows Table 4:

Table 4 THE DESCRIPTIVE STATISTICS FOR PREDICTIVE VARIABLES									
Variable	Minimum	Maximum	Mean	Std. Deviation	c.v. %				
Ln (GDP)	11.79	13.54	12.5658	0.65592	5.21988				
NOGDP/GDP	45.03	75.38	59.9346	7.92009	13.2146				
NOExp/Exp	6.60	25.81	12.9935	4.43228	34.1116				
IMP	14.60	26.70	19.1501	3.24966	16.9694				
NOGOV	7.44	43.51	19.5661	9.04606	46.2333				
Ln (GFCF)	10.03	12.34	11.0969	0.83299	7.50651				
FDI	0.03	8.50	1.8477	2.51796	136.279				
(GRGDP)	-3.76	15.01	3.4258	4.38362	127.96				
PRIV	31.40	50.76	39.1117	4.60617	11.7769				

The correlation between the concentration of the Saudi economy index (NHHI) and the predictive variables in the study Table 5:

Table 5										
THE CORRELATION COEFFICIENT MATRIX BETWEEN NHHI AND OTHER VARIABLES										
	Ln(GDP)	NOGDP/	NOExp/	IMP	NOGOV	Ln	FDI	(GRGDP)	PRIV	
		GDP	Exp			(GFCF)				
NHHI	0.577^{**}	-0.970^{**}	-0.261	0.243	-0.865**	0.513**	0.656^{**}	0.339	-0.863**	
Ln(GDP)		-0.435*	0.556^{**}	0.682^{**}	-0.560**	0.991**	0.521**	0.167	-0.125	
NOGDP/GDP			0.435^{*}	-0.118	0.906**	-0.362	-0.593**	-0.333	0.940^{**}	
NOExp/Exp				0.452^{*}	0.274	0.602^{**}	0.032	-0.119	0.673**	
IMP					-0.199	0.732**	0.401^{*}	0.092	0.112	
NOGOV						-0.492*	-0.549**	-0.294	0.787^{**}	
Ln (GFCF)							0.545^{**}	0.110	-0.044	
FDI								-0.007	-0.431*	
(GRGDP)									-0.381	
**. Correlation is significant at the 0.01 level (2-tailed).										
*. Correlation i	*. Correlation is significant at the 0.05 level (2-tailed).									

There is a direct correlation between the NHHI and each of the following variables: The Gross Domestic Product (GDP); the Gross Fixed Capital Formation (GFCF); and the percentage contribution of Foreign Direct Investment to the GDP (FDI). These results are consistent with the theory as well as with the findings in literatures, as the GDP growth means the growth and expansion of most, if not all the sectors, and hence more economic diversification. In addition, an increase in expenditure on capital goods, construction and infrastructure in the Kingdom means that there is a revenue mobility in most sectors of the country, leading to greater economic diversification. Finally, the growth of foreign direct investment in sectors such as real estate, chemicals, coal, oil, natural gas and tourism has positive impacted these sectors leading to greater economic diversification diversification (The Arab Investment and Export Credit Guarantee Corporation (Dhaman, 2018).

There is an inverse correlation between the NHHI and the non-oil GDP to GDP (NOGDP/GDP), the percentage contribution of Non-Oil Government Revenues as a proportion of total government revenues (NOGOV), and the percentage contribution of the private sector to GDP (PRIV). The inverse relationship between the index of diversity and the ratio of non-oil GDP to non-oil revenues, and the contribution of the private sector to the GDP indicates that the private sector does not contribute much to the GDP due to its orientation towards the commercial sector. The reason for the lack of growth in the non-oil GDP and non-oil revenues in the Kingdom is that the government had taken some measures that have had a negative impact on the non-oil sectors in the Kingdom.

There is no relationship between the NHHI and the percentage contribution of non-oil export-to-total exports (NOExp/Exp), the Total Imports to GDP (IMP), and the GDP Growth at constant prices (2010=100) (GRGDP). These results are due to the large proportion of consumption goods imported into the Kingdom (e.g., More than 25% of importations are food commodities).

To test of the effect of concentration of the type of economy (high – middle) on the efficiency of financial performance for the predicative variables, we must test the following hypothesis:

 H_0 : There is no difference between the mean of the predicative variables and concentration in the types of economy in Saudi Arabia

 H_1 : There is a difference in H_0

	Table 6	5								
THE RESULTS OF T- TEST FOR CONCENTRATION OF THE TYPES OF ECONOMY IN SAUDI										
FOR 7	FOR THE PREDICATIVE VARIABLES									
Classification the concentration of the S	audi economy	Mean	t	sig						
Ln (GDP)	high	12.3485	-3.28100	0.00300						
	middle	13.1554								
NOGDP/GDP	high	63.6858	6.43700	0.00000						
	middle	49.7526								
NOExp/Exp	high	13.3595	0.68600	0.49900						
	middle	12.0000								
IMP	high	18.5132	-1.709	0.10000						
	middle	20.8789								
NOGOV	high	23.0960	4.25300	0.00000						
	middle	9.9851								
Ln (GFCF)	high	10.8507	10.8507 -2.80400							
	middle	11.7654								
FDI	high	1.0937	-2.85200	0.00900						
	middle	3.8941								
(GRGDP)	high	2.8679	-1.07200	0.29400						
	middle	4.9400								
PRIV	high	41.0262	4.77900	0.00000						
	middle	33.9154								

We got the following results:

From Table 6, we concluded that there is a significant difference between the mean for predictive variables in the concentration of the types of economy in Saudi for the following variables in which the p-value is less than 0.05:

- 1. The Gross Domestic Product (GDP)
- 2. The non-oil GDP to GDP (NOGDP/GDP)
- 3. The percentage contribution of Non-Oil Government Revenues as a proportion of total government revenues (NOGOV)
- 4. The percentage contribution of Foreign Direct Investment to the GDP (FDI)
- 5. The percentage contribution of the private sector to GDP (PRIV)

Factor Analysis

The principle application of factor analytic techniques is to reduce the number of variables and to detect the structure in the relationships between the variables; that is to classify the variables. Therefore, we applied factor analysis as a data reduction or structure detection method.

Using the SPSS statistical package, we performed the factor analysis for the data predictive variables for the concentration of Saudi economy which consists of nine ratios, and the following results were obtained:

The data can be reduced to two factors when we apply the extraction method of the principle component analysis and Varimax with Kaiser Normalization rotation method, which is the most popular orthogonal technique as shown below.

The following Table 7 shows us the rotated component and the Component score coefficient for each variable with related factor and the percent of variance.

Table 7									
THE ROTATED COMPONENT AND COMPONENT SCORE COEFFICIENT FOR EACH VARIABLE									
WITH RELATED FACTOR									
Factor % of Variance Variable Rotated Component Component Score Coefficient									
F1	39.89	NOGDP/GDP	0.971	0.270					
		NOGOV	0.883	0.238					
		FDI	-0.540	-0.129					
		(GRGDP)	-0.411	-0.116					
		PRIV	0.975	0.287					
F2	38.05	Ln(GDP)	0.934	0.267					
	NOExp/Exp		0.732	0.246					
		IMP	0.818	-0.136					
		Ln (GFCF)	0.965	0.0.281					

From the above Table 7, we can conclude:

The first factor (F1) is composed of 5 predictive variables which can interpret 39.89% of the variance while the second factor (F2) is composed of 4 predictive variables which can interpret 38.05% of the variance

To test the effect of the concentration of the types of economy in Saudi (high – middle) on the efficiency of factors for predicative variables, we will test the following hypothesis:

H₀: There is no difference between the mean of the factors in the concentration of the types of economy in Saudi

H_1 : There is difference in H_0

The following results were obtained:

Table 8 THE RESULTS OF THE T- TEST FOR THE CONCENTRATION OF THE TYPES OF ECONOMY IN SAUDI FOR THE FACTORS								
Classification of the concentration of the types of economy Mean t sig								
in Saudi.								
f1	high	0.4149162	4.763	0.000				
	middle	-1.1262011						
f2	2 high		-2.699	0.013				
	middle	0.5898428						

From Table 8, we concluded that there is a significant difference between the mean of the factors in the concentration of the types of economy in Saudi for which the p-value is less than 0.05

Application of the Discriminant Analysis

Our dependent variable is categorical "Clustering the observations of NHHI". We have two clusters (high middle).

We have two cases for the independent variables for examining the concentration of the Saudi economy.

- 1. The nine predictive variables
- 2. The two factors

is:

Therefore, the discriminant function for concentration of the Saudi economy in each case

$$DF1 = -0.552 \frac{NoGDP}{GDP} - 0.388PRIV - 0.345NOGOV + 0.266ln(GDP) + 0.231FDI + 0.227ln(GFCF) + 0.139IMP + 0.087(GRGDP) - 0.056 NOEXP/EXP DF2 = 0.762 F1 - 0.308 F2$$

A goodness of fit for discriminant analysis model:

Many analytic measures can be used to determine the efficiency of the discriminant analysis model as follows:

- 1. Wilk's Lambda: The value of Wilk's Lambda statistic for the discriminant functions is 0.136 and 0.381 respectively, indicating differences among groups of the clusters for concentration of the Saudi economy.
- 2. Chi- Square test: This was used to test the significance of the discriminant analysis model, and the following results were obtained Table 9:

Table 9 CHI- SQUARE TEST									
Discriminant Analysis Model	Chi-Square Value	df	Sig.						
DF1	38.854	9	0.000						
DF2	222.211	2	0.000						

The Sig. of x^2 test is 0.000 that is less than 0.05, indicating a significance of the discriminant analysis model and that it depends on it to predict the classification for concentration of the Saudi economy.

- 1. Canonical Correlation: Canonical correlation analysis is used to identify and measure the associations between two sets of variables. It results showed that the correlation between the value of the discriminant function and the independent variables in the function is 0.929 and 0.787 respectively. Indicating a strong relationship between them.
- 2. Percent of correctly Classification: The ability of discriminant functions in our discriminant analysis model to correctly Classification the economy according to measures the concentration of the economy toward a sector (high middle) are 100% and 88.5% respectively.

Therefore, the discriminant analysis model has significant statistical ability to predict with economic situation of the concentration for the Saudi economy.

Prediction of the dependent variable NHHI:

We applied the stepwise regression model to predict the dependent variable for NHHI in many cases for the concentration of Saudi economy; therefore, we have the following models:

Model I: the concentration of Saudi economy (high)
Model (Ia): the predicative variables are the financial ratios
Model (Ib): the predicative variables are factors
Model II: the concentration of Saudi economy (middle)
Model (IIa): the predicative variables are the financial ratios
Model (IIb): the predicative variables are factors
Model III: the concentration of Saudi economy (general)
Model (IIIa): the predicative variables are the financial ratios
Model (IIIb): the predicative variables are factors

Model (Ia): the concentration of Saudi economy (high) and the predicative variables are the financial ratios

The results as shown in Appendix 2-a indicate that the value of the F test is 536.842 with a sig. of 0.000, which is less than 0.05 indicating the significance of the model as given below:

$$NHHI_{high} = 0.233 - 0.004 \frac{NoGDP}{GDP} + 0.012 \ln (GDP)$$

Where the value of the R-square is 0.985 indicating that this model can interpret 98.5% of the change in the value of the NHHI_high. NoGDP/GDP can interpret 90.8% and ln(GDP) 7.7%. Model (Ib): the concentration of Saudi economy (high) and the predicative variables are the factors:

The results as shown in Appendix 3-a indicate that the value of the F test is 90.445 with a sig. of 0.000, which is less than 0.05 indicating the significance of the model as given below:

$$NHHI_{high} = 0.107 - 0.033F1 + 0.011$$
 F2

Where the value of the R-square is 0.919 indicating that this model can interpret 91.9% of the changes in the value of the NHHI_high. F1 can interpret 74.9% and F2 17%.

Model (IIa): the concentration of Saudi economy (middle) and the predicative variables are the financial ratios

The results as shown in Appendix 4-a indicate that the value of the F test is 278.707 with a sig. of 0.000, which is less than 0.05 indicating the significance of the model as given below:

$$NHHI_{middle} = 0.627 - 0.012 \frac{NoGDP}{GDP} + 0.004 \text{ PRIV}$$

Where the value of the R-square is 0.993 indicating that this model can interpret 99.3% of the changes in the value of the NHHI_middle. NoGDP/GDP can interpret 96.8% and PRIV 2%.

Model (IIb): the concentration of Saudi economy (middle) and the predicative variables are the factors:

The results as shown in Appendix 5-a indicate that the value of the F test is 129.657 with sig. of 0.000, which is less than 0.05 indicating the significance of the model as given below:

$$NHHI_{middle} = 0.103 - 0.066F1 + 0.021 F2$$

Where the value of the R-square is 0.985 indicating that this model can interpret 98.5% of the changes in the value of the NHHI_middle. F1 can interpret 85.2% and F2 is 13.3%.

Model (IIIa): the concentration of Saudi economy (general) and the predicative variables are the financial ratios.

The results as shown in Appendix 6-a indicate that the value of the F test is 496.287 with a sig. of 0.000, which is less than 0.05, indicating the significance of the model as given below:

$$NHHI_{general} = 0.275 - 0.007 \frac{NoGDP}{GDP} + 0.002 NoGov + 0.020 \ln (GDP)$$

Where the value of the R-square is 0.985, indicating that this model can interpret 98.5% of the changes in the value of the NHHI_general. NoGDP/GDP can interpret 94.1%, NoGov 4% and $\ln(GDP)$ 0.4%.

Model (IIIb): the concentration of Saudi economy (general) and the predicative variables are the factors:

The results as shown in Appendix 7-a indicate that the value of the F test is 158.742 with a sig. of 0.000, which is less than 0.05, indicating the significance of the model as given below:

 $NHHI_{general} = 0.118 - 0.046F1 + 0.017 F2$

Where the value of the R-square is 0.932, indicating that this model can interpret 93.29% of the changes in the value of the NHHI_general. F1 can interpret 81.9% and F2 is 11.3%.

CONCLUSION AND POLICY IMPLICATIONS

In this study we used the Normalized Herfindahl Hirschman Index (NHHI) as a proxy for economic diversification to analyze the extent of diverseness of the Saudi economy. The main aim of the study is to measure and define the determinants of the Saudi Economy diversity, using a multiple regression analysis for the period 1991-2016. The results suggest a direct correlation between the economic diversification index and the Gross Domestic Product (GDP), the Gross Fixed Capital Formation (GFCF), and the percentage contribution of Foreign Direct Investment to the GDP (FDI). Theoretically, it is supposed that the growth of those indicators, leads to more diversification in the economy. This appears relatively true in the case of Saudi economy.

Also, the non-oil GDP to GDP (NOGDP/GDP), the percentage contribution of Non-Oil Government Revenues as a proportion of total government revenues (NOGOV), and the percentage contribution of the private sector to GDP (PRIV) showed negative correlations with the diversification.

We believe these findings could provide a metric that policymakers can use to gauge the targeted economic diversity as a main pillar for Vision 2030 and ensure a strong and sustainable economy.

This evidence clearly shows that policymakers must focus on some specific strategies, which among them is reduced reliance on government spending, as well as rationalizing government spending using efficiency and performance indicators, foster the private sector, as well as encourage foreign direct investment.

Other strategies to promote diversification should contain encouraging exportations beside oil, especially high-value-added goods and services, enhancing productivity and competitiveness of the economic base. In addition, the economic shift will consist on more productive workforce by increasing employment and eliminating the mismatch between skills and the needs of the labor market, boosting competition and openness to foreign investment and trade with the support of the private sector.

Even though these findings could provide a firm reminder to Saudi policymakers on essential keys to build a strong, diversified, and sustainable economy, there are other issued that we think need to be handled in future researches, such as:

- 1. The relationship between economic diversity and sustainability.
- 2. How to adopt effective strategies that contribute to the transition from an oil-based economy to an economy based on diversified sources of income.

- 3. How to achieve vertical and horizontal integration of the oil sector and other industrial sectors to create added value especially for the manufacturing sector.
- 4. Improving the business environment within the Kingdom (investment climate) to attract foreign investments.
- 5. Encouraging partnerships between research centers and the economic sector.

It is very important to acquire information on the experiences of other countries with sustainable economy; the core ingredients of successful economic diversification strategies include infrastructure and human capital investments, environment and policies conducive to private sector growth and the development of sophisticated non-oil export industries.

APPENDICES

APPENDIX 1 PREDICTIVE PERFORMANCE OF MODELS

Appendix 2 MODEL (Ia): THE CONCENTRATION OF SAUDI ECONOMY HIGH AND THE PREDICATIVE VARIABLES ARE THE FINANCIAL RATIOS													
Variables	Entered/Remo	ved ^{a,b}											
Model	Model Variables Entered Variables Removed Method												
1	NOGDP/GD	P		14010011		-	Stepwise	e ((Criteria	Proba	bility	-of-F-to	-enter <=
_							0.050, Pi	roba	bility-o	f-F-to-rer	nove	>= 0.10	0).
2	Ln(GDP)						Stepwise	e (Cr	iteria: I	Probabilit	y-of-	F-to-ent	er <= .050,
	. ,						Probabili	ity-o	f-F-to-1	remove >	= 0.1	.00).	
a. classifi b. Depend	cation the conc dent Variable:	entratior: NHHI	of th	e Saudi o	econom	$\mathbf{y} = \mathbf{b}$	nigh						
Model Su	ummary ^{c,d}												
Model	R	R Squar	e	Adjuste	ed R Sq	uare			Std. E	rror of the	e Est	imate	
1	0.953 ^a	0.908		0.903					0.0080)0494			
2	0.993 ^b	0.985		0.983					0.0032	29967			
a. Predict	ors: (Constant)	, NOGD	P/GD	Р									
b. Predict	tors: (Constant)	, NOGD	P/GD	P, Ln(Gl	DP)								
c. classifi	cation the conc	centration	of th	e Saudi (econom	$\mathbf{y} = \mathbf{h}$	nigh						
d. Depen	dent Variable:	NHHI											
Model	, u	Sum	of Sa	laros	đf		Moon	Sau		Б		Sig	
	Pagrassion		01 SQ	uares	1			Squa	are	Г 169 151	1	0.000^{a}	
1	Posidual	0.011			17		0.011			108.131		0.000*	
-	Total	0.001)		17		0.000						
2	Regression	0.012	,)		2		0.006 536.8		536 842	12 0.000 ^b			
2	Regidual	0.012	<u>,</u>		16		0.000			550.042		0.000	
-	Total	0.000	,)		18	10 0.000							
9	Total	0.012	-		10								
a. Coefficie	nts ^{a,b}												
Model	into	Ur	stand	ardized (Coeffici	ients	Standa	rdize	ed Coef	ficients	Т		Sig.
11100001		B		S		. Error Beta		Beta			-		~18.
1	(Constant)	0.3	377		0.022		Dotta				17	.034	0.000
	NOGDP/GDI	P -0.	004		0.000)	-0.953				-12	2.967	0.000
2	(Constant)	0.2	233		0.018					12	.804	0.000	
	NOGDP/GD	P0	04-		.000		952-			-3		1.429-	.000
	Ln(GDP)	.01	2		.001		.278		9.1	168	.000		
a. classifi	cation the con	centratio	n of tł	he Saudi	econon	ny = 1	high						•
b. Depen	dent Variable: 1	NHHI				•	•						
Excluded	Variables ^{c,d}					-							
Model		Beta	In	t		Sig		Pa	rtial		Col	linearity	Statistics
	•							Co	rrelatio	n	Tol	erance	
1	Ln(GDP)	0.278	8 ^a	9.168	3	0.0	00	0.9	917		1.00	00	
	NOExp/Exp	0.324	a	8.448	3	0.0	00	0.9	004		0.71	15	
	IMP	0.156	5 ^a	2.293	2.293		36	0.4	97		0.93	37	
	NOGOV	-0.30	7 ^a	-2.19	-2.195		43	-0.	481		0.22	25	
	Ln (GFCF)	0.273	8 ^a	8.273	3	0.0	00	0.9	000		0.99) 7	
	FDI	0.165	5 ^a	2.413	3	0.0	28	0.5	516		0.90)1	
	(GRGDP)	0.063	8 ^a	0.817	7	0.4	26	0.2	200		0.93	30	
	PRIV	0.520) ^a	5.426	5	0.0	00	0.8	305		0.22	20	
2	NOExp/Exp	0.139) ^b	1.554	1	0.1	41	0.3	372		0.10)5	
	IMP	-0.05	9 ^b	-1.47	5	0.1	61	-0.	356		0.53	30	
	NOGOV	0.111	D	1.372	2	0.1	90	0.3	334		0.13	34	
	Ln (GFCF)	-0.20	6 ^b	-0.80	3	0.4	34	-0.	203		0.01	14	

	FDI	0.002 ^b	0.050	0.961	0.013	0.620
	(GRGDP)	0.053 ^b	1.817	0.089	0.425	0.929
	PRIV	-0.244 ^b	-1.406	0.180	-0.341	0.029
D 11			O O D D O D D			

a. Predictors in the Model: (Constant), NOGDP/GDP

b. Predictors in the Model: (Constant), NOGDP/GDP, Ln(GDP)

c. classification the concentration of the Saudi economy = high

d. Dependent Variable: NHHI

Appendix 3 MODEL (Ib): THE CONCENTRATION OF SAUDI ECONOMY HIGH AND THE PREDICATIVE VARIABLES ARE FACTORS

Vari	Variables Entered/Removed ^{a,b}														
Mod	lel	Variables Ent	ered	Variał	oles	Remove	ed	М	lethod						
1		REGR factor	score 1					St	tepwise (Criteri	a: Proba	bilit	y-of-F-to-e	enter <=	
		for analysis 1						0.	050, Proba	ability-	of-F-to-re	emo	ve >= 0.10	0).	
2		REGR factor	score 2					St	tepwise (Criteri	a: Proba	bilit	y-of-F-to-	enter <=	
		for analysis 1						0.	050, Proba	ability-	of-F-to-re	emo	ve >= 0.10	0).	
a. cl	assi	fication the con	centration of	f the Sa	udi	economy	y = hig	gh							
b. D	eper	ndent Variable:	NHHI												
Mod	lel S	ummary ^{c,d}													
Moc	lel	R	R Square			Adjuste	ed R S	qu	are		Std. Erro	r of	the Estimation	ate	
1		0.866 ^a	0.749			0.735					0.013225	68			
2		0.959	0.919			0.909 0.00776265									
a. Pi	redic	ctors: (Constant), REGR fac	tor scor	e	1 for ana	lysis 1	1			0.6	1			
b. P	redi	ctors: (Constant), REGR fac	tor scor	re	I for ana	lysis .	1, ł	REGR fact	or sco	re 2 for an	alys	51S I		
	c. classification the concentration of the Saudi economy = high														
	eper	ident variable:	NHHI												
ANOVA ^{c,u} Model Sum of Squeres df Meen Squere E Sig															
1	Regression 0.009							0		le	F S1		<u>0 000a</u>		
1	-	Residual 0.003				17		0.009		30.828	0.	000			
	-	Total	0.003 17					0	.000						
2		Regression	0.012			2		0	005		90.445	0	0006		
2	-	Residual	0.011			16		0	000		70.443	0.	000		
	-	Total	0.001			18		0	.000						
Coe	ffici	ents ^{a,b}	0.012			10		1							
Mod	lel	ents				Unstand	dardiz	red		Stan	dardized		t	Sig.	
						Coeffic	ients	eu		Coef	ficients		· ·	515.	
						В		St	d. Error	Beta					
1	(C	onstant)				0.102		0.	003				29.864	0.000	
	RE	GR factor score	e 1 for anal	ysis 1		-0.027		0.	004	-0.80	56		-7.129	0.000	
2	(Co	onstant)				0.107		0.	002				49.513	0.000	
	RE	GR factor score	e 1 for anal	ysis 1		-0.033		0.	002	-1.03	33		-13.427	0.000	
	RE	GR factor score	e 2 for anal	ysis 1		0.011		0.	002	0.44	4		5.775	0.000	
a. cl	assi	fication the con	centration of	f the Sa	udi	economy	y = hig	gh							
b. D	b. Dependent Variable: NHHI														
Exc	lude	d Variables ^{b,c}													
Mod	lel				Be	eta In	t		Sig.	Parti	al	Co	ollinearity	Statistics	
										Corr	elation	To	olerance		
1 I	REG	R factor score	2 for analys	sis 1	0.4	444 ^a	5.77	5	0.000	0.82	2	0.	858		
a. Pi	edic	ctors in the Moc	del: (Constar	nt), REC	GR 1	factor sco	ore 1	fo	r analysis	1					
b. cl	assi	fication the con	centration of	f the Sa	udi	economy	y = hig	gh							
c. D	eper	ident Variable:	NHHÍ												

VARIABLES ARE THE FINANCIAL RATIOS Model Variables Entered Variables Removed Method 1 NOGDP/GDP . Stepwise (Criteria: Probability-of-F-to-enter <= 0.00). 2 PRIV . Stepwise (Criteria: Probability-of-F-to-enter <= 0.00). a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI Model R R Square Adjusted R Square Std. Error of the Estimate 1 0.986* 0.973 0.968 0.000418997 . 2 Predictors: (Constant), NOGDP/GDP b. Predictors: (Constant), NOGDP/GDP, PRIV . . b. Predictors: (Constant), NOGDP/GDP, PRIV ADOVA ^{-J} Sum of Squares df Mean Square F Sig. 1 0.003 6 0.000 1 . . 2 Regression 0.003 6 0 0 . 1 0.003 6 0 0 . . 2 Regression	MODEL	L (IIA): THE CO	ONCENTRAT	TION OF	Appe SAU	endix 4 DI ECO	ONOM	IY MIDDLE A	ND	THE PRE	DICATIVE		
Variables Entered/Removed** Model Variables Method I NOGDP/GDP . Stepwise (Criteria: Probability-of-F-to-enter <= 0.050, Probability-of-F-to-remove >= 0.100). 2 PRIV . Stepwise (Criteria: Probability-of-F-to-enter <= 0.050, Probability-of-F-to-remove >= 0.100). a. classification the concentration of the Saudi economy = middl b. Dependent Variable: NHHI Model R R Square Adjusted R Square Std. Error of the Estimate 1 0.986* 0.073 0.988 0.00240423 a. Predictors: (Constant), NOGDP/GDP - - - b. Predictors: (Constant), NOGDP/GDP, PRIV - c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI NOVA 1 0.003 179.845 0.000° Regression 0.003 6 0 - - - Regression 0.003 6 0 - - - a. Predictors: (Constant), NOGDP/GDP, PRIV - c. classification the concentration of the Saudi economy = middel - - - - - - - - -			VARIAB	BLES AR	E TH	E FINA	ANCIA	AL RATIOS					
$ \begin{array}{ c c c c c } \hline Model & Variables Removed & Method & Method & NOGDP/GDP & Variables Removed & Method & Stepwise (Criteria: Probability-of-F-to-remove >= 0.100). \\ \hline Probability-of-F-to-remove >= 0.100). \\ \hline Probability-of-F-to-remove >= 0.100. \\ \hline Stepwise (Criteria: Probability-of-F-to-remove >= 0.100). \\ \hline Stepwise (Criteria: Probability-of-F-to-remove >= 0.100). \\ \hline Nodel Summary^{cd} & Nodel R Sudi conomy = middel \\ \hline Dependent Variable: NHH & Nodel Sum of the Saudi conomy = middel \\ \hline Dependent Variable: NOGDP/GDP & O.993 & 0.989 & 0.00240423 \\ \hline Nodel Constant), NOGDP/GDP & NOGDP/GDP & Constant), NOGDP/GDP & Constant) & Constant & Constant Constant$	Variables	s Entered/Remov	ed ^{a,b}		-								
1 NOGDP/GDP . Stepwise (Criteria: Probability-of-F-to-enter <= 0.050, Probability-of-F-to-enterex	Model	Variables Ente	ered Variab	les Remov	ved	Metho	od (7				0.050		
2 PRIV . Stepwise (Criteria: Probability-of-F-to-enter <= 0.050, Probability-of-F-to-remove >= 0.100). a. classification the concentration of the Saudi economy = middel . . Model Summary-diation of the Saudi economy = middel . . Model Summary-diation of the Saudi economy = middel . . 1 0.986* 0.973 0.968 0.00240423 2 0.996* 0.993 0.00240423 . a. Predictors: (Constant), NOGDP/GDP . . . b. Regression 0.003 1 0.003 179.845 0.000 ^a Constant, NOGDP/GDP Model Regression 0.003 1 0.003 179.845 0.000 ^a 2 Regression 0.003 6 2 Regression 0.003 6 2 Regression 0.003 6 <	1	NOGDP/GDP	•			Stepw Proba	vise (Ci bility-c	riteria: Probabil	lity-o >= 0	of-F-to-ente .100).	er <= 0.050,		
a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI Model Summary. ^{6,d} Model Summary. ^{6,d} Model Summary. ^{6,d} 0.973 0.968 0.00240423 1 0.986 ^a 0.973 0.968 0.00240423 2 0.996 ^b 0.993 0.00240423	2	PRIV				Stepw Proba	vise (Ci bility-c	riteria: Probabil	lity-0 >= 0	of-F-to-ente (100).	er <= 0.050,		
	a. classif	ication the conce	ntration of the	Saudi ecc	onomy	y = mid	del						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model Si	ummary ^{c,d}	11111										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model	R	R Square	Adjuste	ed R S	Square	Square Std Error of the Estimate						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.986 ^a	0.973	0.968		Jquure	0.004	18997	muu	, 			
a. Predictors: (Constant), NOGDP/GDP b. Predictors: (Constant), NOGDP/GDP, PRIV c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI ANOVAc ^d Model Sum of Squares df Mean Square F Sig. 1 Regression 0.003 1 0.003 179.845 0.000° Residual 0.000 5 0.000 Total 0.003 2 0.0002 278.704 0.000° Residual 0.000 4 0.000 Total 0.003 6 a. Predictors: (Constant), NOGDP/GDP b. Predictors: (Constant), NOGDP/GDP, PRIV c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI Coefficients ^{ab} Model Unstandardized Coefficients Standardized Coefficients to the Saudi economy = middel d. Dependent Variable: NHHI Coefficients ^{ab} Model 0.030 1 -0.986 113.411 0.000 2 (Constant) 0.627 0.019 33.250 0.000 NOGDP/GDP -0.009 0.001 -1.311 -12.386 0.000 PRIV 0.004 0.001 0.354 3.345 0.029 a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI Excluded Variable: NHHI PA (141° 2.885 0.	2	0.996 ^b	0.993	0.989			0.002	240423					
b. Predictors: (Constant), NOGDP/GDP, PRIV c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI ANOVA*d Model Sum of Squares df Mean Square F Sig. 1 Regression 0.003 1 0.000 179.845 0.000° Residual 0.000 5 0.000 179.845 0.000° 7 total 0.003 6 2 0.000 278.704 0.000° Residual 0.000 4 0.000 0 1 total 0.003 6 0 0 1 total 0.003 6 0 0 1 total 0.003 6 0 1 total 0.000 4 0.000 0 1 total 0.000 4 0.000 0 1 total 0.000 6 0.000 0 1 total 0.000 6 0.000 0 1 total 0.000 1 0.000 0 1 total 0.000 0 1 total 0.000 0 1 total 0.000 1 0 1 total 0.000 0 1 total 0.033 0 1 total 0.000 0 1 total 0.033 0 1 total 0.033 0 1 total 0.000 0 1 total 0.033 0 1 total 0.000 0 1 total 0.035 0 1 total 0.000 0 1 total 0.027 0.019 0 1 total 0.000 0 2 totastant) 0.627 0.019 0 1 total 0.000 0 1 totastant) 0.627 0.019 0 1 totastant) 0.627 0.019 0 1 totastant) 0.627 0.019 0 1 totastant 0.029 0 1 totastant 0.027 0.019 0 1 totastant 0.027 0.019 0 1 totastant 0 1 t	a. Predic	tors: (Constant).	NOGDP/GDP	012 02			0.00						
c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI NOVA ^{cd} Regression 0.003 1 0.003 179.845 0.000 ^a Residual 0.003 5 0.000 -	b. Predic	tors: (Constant),	NOGDP/GDP	, PRIV									
	c. classif	ication the conce	ntration of the	Saudi ecc	onomy	y = mid	del						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	d. Depen	dent Variable: N	HHI										
$ \begin{array}{ c c c c c c } \hline Model & Mean Square & F & Sig. \\ \hline Regression & 0.003 & 1 & 0.003 & 179.845 & 0.000^{\circ} \\ \hline Residual & 0.000 & 5 & 0.000 & - & - & - & - & - & - & - & - & - $	ANOVA	c,d											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model		Sum of Sq	uares	df		Me	an Square	F		Sig.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Regression	0.003		1		0.0	03	17	9.845	0.000 ^a		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Residual	0.000		5		0.0	00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Total	0.003	6									
$ \begin{array}{ c c c c c c } \hline Residual & 0.000 & 4 & 0.000 &$	2	Regression	0.003		2		0.0	02	27	8.704	0.000 ^b		
$ \begin{array}{ c c c c c c } \hline Total & 0.003 & 6 & & & & & & & & & & & & & & & & & $		Residual	0.000		4		0.0	00					
a. Predictors: (Constant), NOGDP/GDP b. Predictors: (Constant), NOGDP/GDP, PRIV c. classification the concentration of the Saudi economy = middel d. Dependent Variable: NHHI Coefficients ^{a,b} Model Unstandardized Coefficients Standardized Coefficients t B Std. Error Beta 1 1 (Constant) 0.630 0.033 1 19.199 0.000 NOGDP/GDP -0.009 0.001 -0.986 -113.411 0.000 2 (Constant) 0.627 0.019 33.250 0.000 NOGDP/GDP -0.012 0.001 -1.311 -12.386 0.000 PRIV 0.004 0.001 0.354 3.345 0.029 a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI Excluded Variables ^{c.d} Model Beta In t Sig. Partial Collinearity Statistics Tolerance 1 Ln (GDP) 0.140 ^a 2.965 0.041 0.829 0.945 NOExp/Exp 0.150 ^a 1.390 0.237 0.571 0.389 IMP 0.141 ^a 2.885 0.045 0.822 0.921 NOGOV -0.051 ^a -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136 ^a 2.852 0.046 0.819 0.982 FDI -0.095 ^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036 ^c 0.408 0.704 0.200 0.859 Duby 0.254 ^a 3.245 0.050 Correlation 0.354 Collinearity Statistics Control 0.354 Collinearity Statistics Correlation 0.551 0.389 Dependent Variable: VIHII Excluded Variables ^{c.d} NOExp/Exp 0.150 ^a 1.390 0.237 0.571 0.389 IMP 0.141 ^a 2.885 0.045 0.822 0.921 NOGOV -0.051 ^a -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136 ^a 2.852 0.046 0.819 0.982 FDI -0.095 ^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036 ^c 0.408 0.704 0.200 0.859 DIV 0.254 ^b 0.254 ^b 0.250 DIV 0.254 ^b 0.254 ^b 0.250 DIV 0.254 ^b 0.254 ^b 0.250 DIV 0.255 DIV 0.255 ^b 0.150 DIV 0.255 ^b 0.		Total	0.003		6								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	a. Predic b. Predic c. classif d. Depen	tors: (Constant), tors: (Constant), ication the conce <u>dent Variable: N</u> mts ^{a,b}	NOGDP/GDP NOGDP/GDP ntration of the HHI	, PRIV Saudi ecc	onomy	y = mid	del						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model		Unstanda	rdized Co	efficie	ents	Standar	dized Coefficie	nts	t	Sig		
$ \begin{array}{ c c c c c c } \hline 1 & (Constant) & 0.630 & 0.033 & 0.000 & 0.000 \\ \hline NOGDP/GDP & -0.009 & 0.001 & -0.986 & -13.411 & 0.000 \\ \hline 2 & (Constant) & 0.627 & 0.019 & 33.250 & 0.000 \\ \hline NOGDP/GDP & -0.012 & 0.001 & -1.311 & -12.386 & 0.000 \\ \hline PRIV & 0.004 & 0.001 & 0.354 & 3.345 & 0.029 \\ \hline a. classification the concentration of the Saudi economy = middel \\ b. Dependent Variable: NHHI \\ \hline Excluded Variables^{c.d} & & & & & & \\ \hline Model & & & & & & & & \\ \hline Model & & & & & & & & \\ \hline & & & & & & & & & \\ \hline 1 & & & & & & & & & \\ \hline In (GDP) & 0.140^a & 2.965 & 0.041 & 0.829 & 0.945 \\ \hline & & & & & & & & & \\ \hline NOExp/Exp & 0.150^a & 1.390 & 0.237 & 0.571 & 0.389 \\ \hline & & & & & & & & & \\ \hline NOGOV & -0.051^a & -0.649 & 0.552 & -0.309 & 0.999 \\ \hline & & & & & & & & & & \\ \hline NOGOV & -0.051^a & -0.649 & 0.552 & -0.309 & 0.999 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	Widder		B	Std. Er	ror		Beta	dized Coefficie	mo		Sig.		
$ \begin{array}{ c c c c c c c } \hline NOGDP/GDP & -0.009 & 0.001 & -0.986 & -13.411 & 0.000 \\ \hline OGDP/GDP & 0.627 & 0.019 & 33.250 & 0.000 \\ \hline NOGDP/GDP & -0.012 & 0.001 & -1.311 & -12.386 & 0.000 \\ \hline PRIV & 0.004 & 0.001 & 0.354 & 3.345 & 0.029 \\ \hline a. classification the concentration of the Saudi economy = middel \\ \hline b. Dependent Variable: NHHI \\ \hline Excluded Variables^{c.d} & & & & & & & & & & & & & & & & & & &$	1	(Constant)	0.630	0.033						19.199	0.000		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		NOGDP/GDP	-0.009	0.001		-	0.986			-13.411	0.000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	(Constant)	0.627	0.019						33.250	0.000		
PRIV 0.004 0.001 0.354 3.345 0.029 a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI b. Dependent Variable: NHHI b. Dependent Variables ^{c,d} b. Dependent Variables ^{c,d} Collinearity Statistics Model Beta In t Sig. Partial Correlation Collinearity Statistics 1 Ln (GDP) 0.140 ^a 2.965 0.041 0.829 0.945 NOExp/Exp 0.150 ^a 1.390 0.237 0.571 0.389 IMP 0.141 ^a 2.885 0.045 0.822 0.921 NOGOV -0.051 ^a -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136 ^a 2.852 0.046 0.819 0.982 FDI -0.095 ^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036 ^a 0.408 0.704 0.200 0.839		NOGDP/GDP	-0.012	0.001		-	1.311			-12.386	0.000		
a. classification the concentration of the Saudi economy = middel b. Dependent Variable: NHHI Excluded Variables ^{c,d} Model Beta In t Sig. Partial Correlation Collinearity Statistics 1 Ln (GDP) 0.140^a 2.965 0.041 0.829 0.945 NOExp/Exp 0.150^a 1.390 0.237 0.571 0.389 IMP 0.141^a 2.885 0.045 0.822 0.921 NOGOV -0.051^a -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136^a 2.852 0.046 0.819 0.982 FDI -0.095^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036^a 0.408 0.704 0.200 0.839		PRIV	0.004	0.001		().354			3.345	0.029		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a. classif	ication the conce	ntration of the	Saudi eco	onomy	y = mid	del						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D. Depen	Wariahlaged	ппі										
ModelBeta IntSig.Partial CorrelationConnearity statistics Tolerance1 $Ln (GDP)$ 0.140^a 2.965 0.041 0.829 0.945 NOExp/Exp 0.150^a 1.390 0.237 0.571 0.389 IMP 0.141^a 2.885 0.045 0.822 0.921 NOGOV -0.051^a -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136^a 2.852 0.046 0.819 0.982 FDI -0.095^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036^a 0.408 0.704 0.200 0.839	Excluded	i variables ^{e,a}	Deta La	1		C:-		Dantial		- 11:	Ctatistics		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model		Beta In	τ		51g.		Partial		onnearity	Statistics		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		0.1403	2.065		0.041		Correlation	1	olerance			
NOExp/Exp 0.130° 1.390 0.237 0.571 0.389 IMP 0.141° 2.885 0.045 0.822 0.921 NOGOV -0.051° -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136° 2.852 0.046 0.819 0.982 FDI -0.095° -0.761 0.489 -0.356 0.380 (GRGDP) 0.036° 0.408 0.704 0.200 0.839	1	Ln (GDP)	0.140	2.965		0.041		0.829	0	.945			
IMP 0.141^{a} 2.885 0.045 0.822 0.921 NOGOV -0.051^{a} -0.649 0.552 -0.309 0.999 Ln (GFCF) 0.136^{a} 2.852 0.046 0.819 0.982 FDI -0.095^{a} -0.761 0.489 -0.356 0.380 (GRGDP) 0.036^{a} 0.408 0.704 0.200 0.839		1.390		0.237		0.571	0	.389					
INOGOV -0.051 -0.049 0.552 -0.309 0.999 Ln (GFCF) 0.136 ^a 2.852 0.046 0.819 0.982 FDI -0.095 ^a -0.761 0.489 -0.356 0.380 (GRGDP) 0.036 ^a 0.408 0.704 0.200 0.839 DBW 0.254 ^a 2.245 0.020 0.859 0.150		IMP	0.0518	2.885		0.045		0.822	0	.921			
Ln (GFCF) 0.150° 2.852 0.046 0.819 0.982 FDI -0.095^{a} -0.761 0.489 -0.356 0.380 (GRGDP) 0.036^{a} 0.408 0.704 0.200 0.839 DBW 0.254^{a} 2.245 0.020 0.858 0.150	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.552		-0.309	0	.999			
FDI -0.095^{-1} -0.761 0.489 -0.356 0.380 (GRGDP) 0.036^{a} 0.408 0.704 0.200 0.839 DRW 0.254^{a} 2.245 0.020 0.859 0.150		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.852		0.046		0.819	0.982				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.489	<u>189</u> -0.356		0.380				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.704		<u>/04</u> 0.200 029 0.858		0.039			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	rKIV In (CDD)	0.063b	0.756		0.029	<u>129</u> 0.858 505 0.400		0.139				
$\frac{1}{10000000000000000000000000000000000$	2	NOEvn/Evn	-0.039b	_0.730		0.303		-0.103	0.200				

	IMP	0.036 ^b	0.286	0.794	0.163	0.143				
	NOGOV	-0.033 ^b	-0.721	0.523	-0.384	0.981				
	Ln (GFCF)	0.044 ^b	0.416	0.705	0.234	0.204				
	FDI	-0.054 ^b	-0.728	0.519	-0.387	0.367				
	(GRGDP)	0.020 ^b	0.379	0.730	0.214	0.829				
a. Predict	a. Predictors in the Model: (Constant), NOGDP/GDP									

b. Predictors in the Model: (Constant), NOGDP/GDP, PRIV

c. classification the concentration of the Saudi economy = middel

d. Dependent Variable: NHHI

Appendix 5 MODEL IIB: THE CONCENTRATION OF SAUDI ECONOMY MIDDLE AND THE PREDICATIVE VARIABLES ARE THE FACTORS

Variable	s Entered/Remo	ved ^{a,b}					010					
Model	Variables Ent	tered	Varia	bles	Metho	od						
			Remo	ved								
1	REGR factor	score 1 for			Stepw	ise (Crit	eria:	Probab	ility-of	-F-to	-enter <	=0.050,
	analysis 1				Proba	bility-of-F	F-to-r	emove >	→= 0.10)).		
2	REGR factor	score 2 for			Stepw	ise (Crit	eria:	Probab	ility-of	-F-to	-enter <	=0.050,
	analysis 1				Proba	bility-of-F	F-to-r	emove >	= 0.100)).		
a. classif	ication the conc	entration of the S	audi e	conor	my = mi	iddle						
b. Depen	dent Variable: I	NHHI										
Model St	ummary ^{c,d}											
Model	R	R Square		A	djusted	R Square			Std. Er	ror o	f the Esti	mate
1	0.923ª	0.852		0.	822				0.0098	0141		
2	0.992 ^b	0.985		0.977 0.00351057								
a. Predic	tors: (Constant)	, REGR factor sc	ore 1	for a	nalysis	1						
b. Predic	tors: (Constant)	, REGR factor sc	ore 1	for a	nalysis	1, REGR	factor	r score	2 for ar	nalys	is 1	
c. classif	ication the conc	entration of the S	audi e	conor	my = mi	iddel						
d. Depen	dent Variable: I	NHHI										
ANOVA	c,u					~						
Model	Model Sum of Squ			df	Mean	Square		F		Sig.		
1	Regression	0.003			0.003				28.779		0.003*	l
	Residual	0.000		5	0.000						-	
-	Total	0.003		6	0.000				100.65	7	0.000	`
2	Regression	0.003		2	0.002		129.65	7	0.000	,		
	Residual	0.000		4	0.000							
	Total	0.003		6								
a. Predic	tors:											
Coefficie	ents,e		I.I.e.	4 a m 1		Carffinia		Ctanda			4	C: -
Model			Uns	standa	araizea	Coefficier	nts	Standa Cooffi			t	51g.
			D			Std Erro		Coefficients				
1 (Co	actant)		0.12	10		0.012	1	Deta			10 515	0.000
	P factor score	1 for analysis 1	0.12	55		0.012		0.023			5 365	0.000
$\frac{1}{2}$ (Co	nstant)		-0.0	13		0.010		-0.923			17 070	0.003
	R factor score	1 for analysis 1	0	66		0.000		-1 109			-	0.000
KLX	Six factor score	1 101 analysis 1	-0.0	00		0.004		-1.109			-	0.000
REC	GR factor score	0.02	21		0.004		0.409			5 914	0.004	
a classif	ication the conc	entration of the S	andi eq	cono	mv = mi	iddel		0.107			0.717	0.004
b. Depen	dent Variable:	NHHI	audi O	-01101	<i>y</i> = m							
Excluded	l Variables ^{b,c}											
Model		Beta In		t	Sig. Pa		artial Collinearity Statistics		stics			
						6	Cor	relation	Tol	erand	ce	
L					I							

1	REGR factor score 2 for analysis	0.409 ^a	5.914	0.004	0.947	0.794
	1					
a. F	Predictors in the Model: (Constant), R	EGR factor s	core 1 f	for analy	sis 1	
1	1	n 1.	•	1 1 1		

b. classification the concentration of the Saudi economy = middel

c. Dependent Variable: NHHI

1	MODEL (IIIA).	THE CONCENTRA	Apper	ndix 6 F SALIDI ECONOMV (CENERAL AN	р тнғ				
1	PRE	EDICATIVE VARIA	BLES A	RE THE FINANCIAL	RATIOS	DIIIE				
Variable	s Entered/Remove	ed ^a								
Model	Variables Ent	tered Variables	Removed	Method						
1	NOGDP/GDI	P .		Stepwise (Criteria:	Probability-o	F-F-to-enter <= 0.100				
2	NOExp/Exp			Stepwise (Criteria)	Probability-o	f-F-to-enter <=				
				0.050, Probability-c	of-F-to-remove >	>= 0.100).				
3	NOGOV			Stepwise (Criteria	Probability-o	f-F-to-enter <=				
				0.050, Probability-c	of-F-to-remove >	>= 0.100).				
4	Ln(GDP)			Stepwise (Criteria	Probability-o	f-F-to-enter <=				
				0.050, Probability-c	of-F-to-remove >	>= 0.100).				
5		NOExp/Ex	хр	Stepwise (Criteria	Probability-o	f-F-to-enter <=				
				0.050, Probability-c	of-F-to-remove >	>= 0.100).				
a. Depen	dent Variable: NF	IHI								
Model S	ummary ^f									
Model	R	R Square		Adjusted R Square	Std. Error	of the Estimate				
1	0.970 ^a	0.941		0.938	0.0127531	4				
2	0.986 ^b	0.972		0.970	0.0088979	2				
3	0.991°	0.981		0.979	0.0074676	0				
4 0.993 ^d 0.986 0.983 0.00666783										
5	0.993 ^e	0.985		0.983	0.0066011	3				
a. Predic	tors: (Constant), N	NOGDP/GDP	-							
b. Predic	tors: (Constant), N	NOGDP/GDP, NOExp	p/Exp							
c. Predic	tors: (Constant), N	NOGDP/GDP, NOExp)/Exp, NC	$OOV L_{\pi}(CDD)$						
a. Predic	tors: (Constant), r	NOGDP/GDP, NOEXI	D/Exp, NO	JGUV, Ln(GDP)						
f Depen	dent Variable: NH	IUGDF/GDF, NOGO	v, Lii(Oi	Jr)						
	f									
Model		Sum of Squares	df	Mean Square	F	Sig				
1	Regression		1		380 787	0.000ª				
1	Residual	0.002	24	0.002	500.707	0.000				
	Total	0.066	25	0.000						
2	Regression	0.064	2.	0.032	404 271	0.000 ^b				
-	Residual	0.002	23	0.000	101.271	0.000				
	Total	0.066	25	0.000						
3	Regression	0.065	3	0.022	386,197	0.000°				
U	Residual	0.001	22	0.000	0001177	0.000				
	Total	0.066	25							
4	Regression	0.065	4	0.016	364.947	0.000 ^d				
	Residual	0.001	21	0.000						
	Total	0.066	25							
5	Regression	0.065	3	0.022	496.287	0.000 ^e				
	Residual	0.001	22	0.000						
	Total	0.066	25							
a. Predic	tors: (Constant), N	NOGDP/GDP		1		•				
b. Predic	tors: (Constant), N	NOGDP/GDP, NOExp	o/Exp							

		(.,,	,	· · · ·	1, , , , , , , ,	
d.	Predictors:	(Consta	nt), NOC	GDP/GDP,	NOExp/Ex	kp, NOG	OV, Ln(GDP)

e. Predictors: (Constant), NOODP/ODP, NOEXp/Exp, NOGC e. Predictors: (Constant), NOGDP/GDP, NOGOV, Ln(GDP) f. Dependent Variable: NHHI

Coefficie	ents ^a								
Model		Unstandard	lized (Coefficier	nts	S	tandardized	t	Sig.
						0	Coefficients		
		В		Std. Err	or	E	Beta		
1	(Constant)	0.494		0.019				25.402	0.000
	NOGDP/GDP	-0.006		0.000		-(0.970	-19.514	0.000
2	(Constant)	0.498		0.014				36.626	0.000
	NOGDP/GDP	-0.007		0.000		-	1.056	-27.417	0.000
	NOExp/Exp	0.002		0.000		0	.197	5.129	0.000
3	(Constant)	0.556		0.021				26.403	0.000
	NOGDP/GDP	-0.008		0.001		-	1.286	-16.589	0.000
	NOExp/Exp	0.003		0.000		0.232		6.828	0.000
	NOGOV	0.001		0.000		0	.237	3.264	0.004
4	(Constant)	0.335	<u>335</u> 0.088 008 0.001					3.818	0.001
	NOGDP/GDP	-0.008		0.001		-	1.185	-14.911	0.000
	NOExp/Exp	0.001)1			0	.056	0.750	0.462
	NOGOV	0.002		0.000		0	.308	4.371	0.000
	Ln(GDP)	0.016		0.006		0	.203	2.568	0.018
5	(Constant)	0.275		0.034				7.987	0.000
	NOGDP/GDP -0.0 NOGOV 0.0			0.000		-	1.149	-18.449	0.000
	NOGOV (Ln(GDP) (0.000			0	.321	4.741	0.000
	Ln(GDP)	0.020		0.002		0	.258	8.113	0.000
a. Depen	a. Dependent Variable: NHI								
Excluded	d Variables ^f	-	-				•		
Model	Model		t		Sig.		Partial	Collineari	ty Statistics
-	1						Correlation	Tolerance	
1	Ln(GDP)	0.192 ^a	4.82	29	0.000		0.710	0.811	
	NOExp/Exp	0.197 ^a	5.12	29	0.000		0.730	0.811	
	IMP	0.130 ^a	3.00	07	0.006		0.531	0.986	
	NOGOV	0.081 ^a	0.68	80	0.503		0.140	0.178	
	Ln (GFCF)	0.186 ^a	4.80	54	0.000		0.712	0.869	
	FDI	0.125 ^a	2.18	85	0.039		0.415	0.649	
	(GRGDP)	0.018 ^a	0.33	39	0.737		0.071	0.889	
	PRIV	0.414 ^a	3.42	24	0.002		0.581	0.117	
2	Ln(GDP)	0.067 ^b	0.68	32	0.502		0.144	0.127	
	IMP	0.043 ^b	1.0	19	0.319		0.212	0.673	
	NOGOV	0.237 ^b	3.20	54	0.004		0.571	0.161	
	Ln (GFCF)	0.074 ^b	0.84	43	0.408		0.177	0.158	
	FDI	0.044 ^b	0.94	41	0.357		0.197	0.545	
	(GRGDP)	0.0126	0.33	33	0.742		0.071	0.888	
	PRIV	-0.123- ^b	-0.6	514	0.545		-0.130	0.031	
3	Ln(GDP)	0.203°	2.50	58	0.018		0.489	0.108	
	IMP	0.050°	1.4	30	0.168		0.298	0.671	
	Ln (GFCF)	0.168°	2.39	99	0.026		0.464	0.142	
	FDI	0.031°	0.78	83	0.442		0.169	0.539	
	(GRGDP)	0.010 ^c	0.30	02	0.766		0.066	0.888	
	PRIV	0.083°	0.40	51	0.649		0.100	0.027	
4	IMP	0.001 ^d	0.0	17	0.987		0.004	0.426	
	Ln (GFCF)	-0.016- ^d	-0.0)64	0.949		-0.014	0.012	
	FDI	0.028 ^d	0.78	87	0.441		0.173	0.539	

	(GRGDP)	0.009 ^d	0.317	0.755	0.071	0.888
	PRIV	-0.241 ^d	-1.242	0.228	-0.268	0.017
5	NOExp/Exp	0.056 ^e	0.750	0.462	0.161	0.120
	IMP	-0.009 ^e	-0.243	0.810	-0.053	0.486
	Ln (GFCF)	-0.048 ^e	-0.206	0.839	-0.045	0.013
	FDI	0.031 ^e	0.901	0.378	0.193	0.551
	(GRGDP)	0.009 ^e	0.326	0.748	0.071	0.888
	PRIV	-0.220 ^e	-1.145	0.265	-0.242	0.018

a. Predictors in the Model: (Constant), NOGDP/GDP

b. Predictors in the Model: (Constant), NOGDP/GDP, NOExp/Exp

c. Predictors in the Model: (Constant), NOGDP/GDP, NOExp/Exp, NOGOV

d. Predictors in the Model: (Constant), NOGDP/GDP, NOExp/Exp, NOGOV, Ln(GDP)

e. Predictors in the Model: (Constant), NOGDP/GDP, NOGOV, Ln(GDP)

f. Dependent Variable: NHHI

Appendix 7 MODEL (IIIB): THE CONCENTRATION OF SAUDI ECONOMY GENERAL AND THE PREDICATIVE VARIABLES ARE THE FACTORS

Variable	Variables Entered/Removed ^a												
Model	Variables Entered	,	Variables Re	emoved	Method								
1	REGR factor score	1 for	•		Stepwise	e (Criteria:	Probabili	ity-of-F-to-	-enter <=				
	analysis 1				0.050, P	robability-	of-F-to-re	emove >= ().100).				
2	REGR factor score	2 for			Stepwise	e (Criteria:	Probabili	ity-of-F-to-	enter <=				
	analysis 1			0.050 , Probability-of-F-to-remove ≥ 0.100).									
a. Depen	dent Variable: NHHI												
Model S	ummary ^c	1											
Model	R	R Squar	e	Adjuste	d R Squar	e	Std. Err	or of the E	stimate				
1	0.905ª	0.819		0.811			0.02229	155					
2	0.966 ^b	0.932		0.927			0.01390	536					
a. Predic	ctors: (Constant), REGR f	e 1 for anal	ysis 1										
b. Predic	b. Predictors: (Constant), REGR factor score 1 for analysis 1, REGR factor score 2 for analysis 1												
c. Depen	c. Dependent Variable: NHHI												
Coefficie	Coefficients ^a												
Model		Unstand	lardized		Standardi	zed	t	Sig.					
		Coeffic	ients		Coefficie	nts	_						
			В	Std. Error Be		Beta							
1	(Constant)		0.118	0.118 0.004				26.936	0.000				
]]	REGR factor score 1 for	analysis 1	-0.046	6 0.004		-0.905		-	0.000				
2	(Constant)		0.118	0.00	3			43.181	0.000				
]	REGR factor score 1 for	analysis 1	-0.046-	0.003	3	-0.905		-	0.000				
								16.698					
]	REGR factor score 2 for	analysis 1	0.017	0.00	3	0.337		6.219	0.000				
a. Depen	dent Variable: NHHI												
Excluded	d Variables ^b												
Model			Beta In	t	Sig.	Partial	C	ollinearity					
						Correla	tion St	tatistics					
							T	olerance					
1	REGR factor score 2 for	analysis 1	l 0.337ª	6.219	0.000	0.792	1.	000					
a. Predic	a. Predictors in the Model: (Constant), REGR factor score 1 for analysis 1												
b. Deper	ndent Variable: NHHI												

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the Chair Sheikh Mohammad Al-Fawzan to the Expectations of Macroeconomic Saudi at Imam University, Saudi Arabia.

REFERENCES

- Abosedra, S., & Tang, C.F. (2018). Are exports a reliable source of economic growth in MENA countries? new evidence from the rolling granger causality method. *Empirical Economics*, 1-11.
- Abouchakra, R., Moujaes, C., & Najjar, M.R. (2008). *Economic diversification: The road to sustainable development*. USA: Booz Allen Hamilton.
- Aker, Ş., & Iman, A. (2019). Comparison of Business Environments in Oil-Rich MENA Countries: A Clustering Analysis of Economic Diversification and Performance. *Emerging Markets Finance and Trade*, 55(12), 2871-2885.
- Albassam, B.A. (2015). Economic diversification in Saudi Arabia: Myth or reality? Resources Policy, 44, 112-117.
- Alghamedi, A. (2014). Lack of diversification is a challenge facing Saudi Arabia. *Journal of Global Business Issues*, 8(2), 57.
- Algowear Almestneer, R.A. (2018). Economic diversification: The case of Saudi Arabia with reference to rich natural resource countries
- Ali, G., & Li, Z. (2018). Exports-led growth or growth-led exports in the case of china and Pakistan: An empirical investigation from the ARDL and granger causality approach. *The International Trade Journal*, 32(3), 293-314.
- Banafea, W., & Ibnrubbian, A. (2018). Assessment of economic diversification in Saudi Arabia through nine development plans. *OPEC Energy Review*, 42(1), 42-54.
- Elheddad, M.M. (2016). Natural resources and FDI in GCC countries. *International Journal of Business and Social Research*, 6(7), 12-22.
- Gozgor, G., & Can, M. (2016). Effects of the product diversification of exports on income at different stages of economic development. *Eurasian Business Review*, 6(2), 215.
- Gylfason, T. (2017). From double diversification to efficiency and growth. *Comparative Economic Studies*, 59(2), 149.
- Khorsheed, M.S. (2015). Saudi Arabia: From oil kingdom to Knowledge-Based economy. *Middle East Policy*, 22(3), 147-157.
- Konstantakopoulou, I. (2017). The aggregate exports-GDP relation under the prism of infrequent trend breaks and multi-horizon causality. *International Economics and Economic Policy*, *14*(4), 661-689.
- Kristjanpoller, W., Olson, J.E., & Salazar, R.I. (2016). Does the commodities boom support the export led growth hypothesis? evidence from Latin American countries. *Latin American Economic Review*, 25(1), 1-13.
- Mehrara, M. (2008). The asymmetric relationship between oil revenues and economic activities: The case of oilexporting countries. *Energy Policy*, *36*(3), 1164-1168.
- Persson, M. (2013). Trade facilitation and the extensive margin. *The Journal of International Trade & Economic Development*, 22(5), 658-693.
- Persson, M., Wilhelmsson, F., Department of Economics, Lund University, Nationalekonomiska institutionen, Swedish Institute for Food and Agricultural Economics, Institutet för livsmedelsekonomisk analys, A. (2016). EU trade preferences and export diversification. *The World Economy*, 39(1), 16-53.
- Salam, Y., & Egeli, H.A. (2017). Empirical analysis of export-led growth and domestic demand-led growth hypotheses in east Asia. *Uluslararas Ktisadi VeDari Ncelemeler Dergisi*, *10*(19), 211-226.
- Sohail, M.S. (2012). Economic diversification in Saudi Arabia: The need for improving competitiveness for sustainable development. 2012th ed., 147-156. New York, NY: Springer New York.
- The Arab Investment and Export Credit Guarantee Corporation (Dhaman). (2018). Investment climate in Arab
countries (dhaman investment attractiveness index 2018). Kuwait: The Arab Investment and Export Credit
Guarantee Corporation. Retrieved from http://dhaman.net/en/wp-
content/uploads/sites/3/2018/11/ClimateReport2018-En.pdf

Vision 2030 kingdom of Saudi Arabia, Retrieved from http://www.vision2030.gov.sa

Yamada, M. (2018). Can Saudi Arabia move beyond "production with rentier characteristics"? human capital development in the transitional oil economy. *The Middle East Journal*, 72(4), 587-609.