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Abstract

Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) agonists and retinoid acid have anti-
inflammatory and anti-proliferative effects; however, their synergistic effects are not well known. We
investigated the combined anti-inflammatory effect of rosiglitazone, which is a PPAR-γ agonist, and
retinoid acid in rat mesangial cells (RMCs) stimulated by a high glucose (HG) concentration (30 mmol
of D-glucose). The doses of rosiglitazone and all-trans retinoic acid (ATRA) which inhibited MCP-1
mRNA expression by 20-40% were selected for the study. At 48 h following incubation of RMCs in HG,
MCP-1 mRNA expression was significantly increased. Rosiglitazone and ATRA lowered MCP-1 mRNA
expression in a dose-dependent manner. Among the effective doses, 1.0 and 5.0 µmol/L of rosiglitazone,
and 0.1 and 1.0 µmol/L of ATRA were selected for further studies. HG-induced MCP-1 mRNA
expression was inhibited by combined treatment with rosiglitazone and ATRA. A combination of 1.0
µmol/L rosiglitazone and 0.1 µmol/L ATRA tended to decrease MCP-1 mRNA expression compared to
the individual treatments. A combination of 5.0 µmol/L rosiglitazone and 1.0 µmol/L ATRA significantly
inhibited MCP-1 mRNA expression. MCP-1 protein levels were significantly increased after 48 h of
incubating the RMCs in HG. The 5.0 µmol/L dose of rosiglitazone significantly lowered MCP-1 protein
synthesis while 1 µmol/L ATRA decreased MCP-1 expression stimulated by HG. Combined treatment
with rosiglitazone and ATRA caused a larger decrease in MCP-1 protein synthesis compared to either
treatment alone. In conclusion, the data obtained show the possibility of a synergistic effect on MCP-1
mRNA expression by rosiglitazone and ATRA.
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Introduction
Inflammation plays a key role in the pathogenesis of diabetic
nephropathy. Infiltration of chemokines, cytokines, and
inflammatory cells into the kidney has been reported in both
human and animal diabetic models [1,2]. Recently, several
clinical trials have been conducted with the aim of controlling
inflammation in patients with diabetic nephropathy.
Peroxisome proliferator-activated receptor-γ (PPAR-γ) and
retinoid X receptor (RXR) are nuclear receptors involved in
various cellular processes. PPAR-γ regulates lipid and glucose
metabolism and is implicated in pathological conditions
including obesity, diabetes, and atherosclerosis [3]. RXR
regulates reproduction, cellular differentiation, and
hematopoiesis [4]. RXR is critical in the development of the
kidneys. A deficiency of retinoic acid results in a reduction in

nephron mass [5]. PPAR-γ and RXR agonists are beneficial in
various renal diseases. PPAR-γ is involved in the protection of
the renal tissues from inflammatory and fibrotic responses
[6,7]. Retinoic acid has also shown anti-inflammatory and anti-
proliferative effects in multiple animal models of glomerular
disease [8-10]. PPAR-γ and RXR form heterodimers within the
nucleus and activate transcriptional factors [11]. Although their
anti-inflammatory and anti-proliferative effects have been
known well, their synergistic effect in kidney diseases is not
clear. We therefore investigated the anti-inflammatory effect of
a combined treatment with PPAR-γ and RXR agonists in rat
mesangial cells (RMCs) stimulated by a high glucose (HG)
concentration.
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Materials and Methods

RMC culture and experimental design
RMCs were obtained by culturing glomeruli isolated from the
kidneys of male Sprague-Dawley rats by conventional sieving
methods as previously described [12]. Briefly, the mesangial
cells were cultured in Dulbecco’s modified Eagle’s medium
containing 20% fetal bovine serum, 100 U/ml penicillin, 100
µg/ml streptomycin, 44 mmol/L NaHCO3, and 14 mmol/L
N-2-hydroxy-ethylpiperazine-N’-2-ethane sulfonic acid, at
37°C in a humidified atmosphere of 95% air and 5% CO2.
Subconfluent cells were cultured in 0.1% fetal bovine serum
for 24 h before the experiments. The cells were then incubated
with 5.6 (control) or 30 mmol/L D-glucose in the presence of
rosiglitazone (GlaxoSmithKline, Middlesex, UK) and/or all-
trans retinoic acid (ATRA; Sigma-Aldrich, St. Louis, MO,
USA). Cells were cultured in triplicates and harvested at 6 and
48 h, for extraction of total RNA and protein. Bioassays for
monocyte chemoattractant peptide-1 (MCP-1) protein were
performed on supernatants collected from the samples. All
experiments were performed using cells between the 6th and
8th passages.

Quantitative real-time polymerase chain reaction
Total RNA was extracted using TRIzol and reverse transcribed
using a cDNA synthesis kit (Fermentas, Burlington, Canada) as
previously described [13]. Gene expressions were measured by
quantitative real-time polymerase chain reaction (qRT-PCR).
The RT-PCR was performed by following a standard three-step
cycling condition using SYBR Green Master mix. Primers
were designed from the respective gene sequences using
Primer3 software. The nucleotide sequences of each primer
were as follows: MCP-1, sense 5’
ATGCAGTTAATGCCCCACTC 3’ and anti-sense 5’
TTCCTTATTGGGGTCAGCAC 3’; and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), sense 5’
TGCACCACCAACTGCTTAGC 3’ and anti-sense 5’
GGCATGGACTGTGGTCATGAG 3’. The expression levels
of all the genes were normalized to that of the housekeeping
gene GAPDH.

Measurement of MCP-1 protein in culture
supernatant
The secretary MCP-1 protein levels in the supernatants
collected from the samples were measured. The concentration
of MCP-1 was determined by quantitative sandwich Enzyme-
Linked Immunosorbent Assay (ELISA) using a commercial kit
(Biosource Inc., Camarillo, CA, USA), according to the
manufacturer's instructions. Each assay was performed in
duplicate, and color intensity was measured using an ELISA
reader at 450 nm. MCP-1 concentration was expressed relative
to the total protein concentration in each sample.

Statistical analysis
We used non-parametric analysis because most of the
variables, especially urinary MCP-1, were not normally
distributed even after logarithmic transformation. The Mann-
Whitney U test was used to compare differences between two
groups. Statistical significance was defined as p value<0.05.
All statistical analyses were performed using SPSS version
10.0 (SPSS Inc., Chicago, IL, USA). Data have been expressed
as mean ± standard error.

Results

Anti-inflammatory effect of rosiglitazone and ATRA
on MCP-1 mRNA expression in RMCs
We tested the effect of several doses of rosiglitazone and
ATRA on MCP-1 mRNA expression in order to select the
optimal doses. The doses that inhibited MCP-1 mRNA
expression by 20-40% were selected.

Figure 1. MCP-1 mRNA expression at 48 h in response to various
doses of rosiglitazone and ATRA. Among the effective doses, 1.0 and
5.0 µmol/L of rosiglitazone, and 0.1 and 1.0 µmol/L of ATRA were
selected for further studies. Data are expressed as mean ± S.E. HG:
High glucose; Ros: Rosiglitazone; ARTA: All-Trans Retinoic Acid.
#p<0.05 vs. control; *p<0.05 vs. HG; **p<0.01 vs. HG.

Although MCP-1 mRNA expression was increased at 6 h
following incubation of RMCs with HG, it was not significant
(data not shown); however, at 48 h, MCP-1 mRNA expression
was significantly increased. The combined treatment with
rosiglitazone and ATRA resulted in a reduction in MCP-1
mRNA expression in the RMCs in a dose-dependent manner
(Figure 1). Among the effective doses, we chose 1.0 and 5.0
µmol/L of rosiglitazone, and 0.1 and 1.0 µmol/L of ATRA for
further studies. HG-induced MCP-1 mRNA expression was
inhibited by treating the cells with a combination of
rosiglitazone and ATRA. A combination of 1.0 µmol/L
rosiglitazone and 0.1 µmol/L ATRA tended to decrease MCP-1
mRNA expression compared to either rosiglitazone or ATRA
alone. A combination of 5.0 µmol/L rosiglitazone and 1.0
µmol/L ATRA significantly inhibited MCP-1 mRNA
expression than either treatment alone (Figure 2).
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Figure 2. The effect of combination treatment on MCP-1 mRNA
expression A combination of 1.0 µmol/L rosiglitazone and 0.1 µmol/L
ATRA tended to decrease MCP-1 mRNA expression more than either
rosiglitazone or ATRA alone. A combination of 5.0 µmol/L
rosiglitazone and 1.0 µmol/L ATRA significantly inhibited MCP-1
mRNA expression than either treatment alone. Data are expressed as
mean ± S.E. HG: High Glucose; Ros: Rosiglitazone; ARTA: All-Trans
Retinoic Acid. # p<0.05 vs. control; *p<0.05 vs. HG; **p<0.05 vs.
Ros or ATRA alone.

Figure 3. The effect of combination treatment on MCP-1 protein
level. Combined treatment with rosiglitazone and ATRA tended to
decrease HG-induced MCP-1 protein synthesis in RMCs more than
either treatment alone. However, this effect was not significant
because rosiglitazone alone suppressed MCP-1 protein level
significantly. Data are mean ± S.E. HG: High Glucose; Ros:
Rosiglitazone; ARTA, All-Trans Retinoic Acid. #p<0.05 vs. control;
*p<0.05 vs. HG; **p<0.05 vs. ATRA alone.

Effect of rosiglitazone and ATRA on MCP-1 protein
synthesis in RMCs
MCP-1 protein levels in the RMCs significantly increased after
the 48-h incubation in HG (control: 97.7 ± 3.9 pg/mg protein;
HG: 295.5 ± 43.6 pg/mg protein; p<0.01) (Figure 3). The 5-
µmol/L dose of rosiglitazone significantly reduced MCP-1
protein synthesis while ATRA decrease MCP-1 expression.
Combined treatment with rosiglitazone and ATRA tended to
decrease MCP-1 protein synthesis in the RMCs more than
either treatment alone. However, the decrease caused by the

combination was not significantly higher than that caused by
either treatment alone (HG: 295.5 ± 43.6 pg/mg protein; HG +
rosiglitazone: 77.3 ± 22.5 pg/mg protein, p<0.01 vs. HG; HG +
ATRA: 83.7 ± 48.3 pg/mg protein, p<0.05 vs. HG; HG +
rosiglitazone + ATRA: 40.6 ± 7.4 pg/mg protein; p<0.01 vs.
HG, p<0.05 vs. HG + rosiglitazone).

Discussion
In this study, we have shown that rosiglitazone and ATRA
reduced HG-induced MCP-1 synthesis in RMCs. Moreover,
co-treatment with rosiglitazone and ATRA suppressed MCP-1
expression more than either treatment alone. These data show
the possibility of a synergistic effect on MCP-1 expression due
to combined treatment with PPAR-γ and RXR agonists. PPAR-
γ agonists have been widely used as insulin sensitizers in
diabetic patients. A meta-analysis has demonstrated potential
significant benefits of PPAR-γ agonists in diabetic patients
[14]. In addition to having an anti-diabetic effect, PPAR-γ
agonists are known to have reno-protective effects. Some
studies in animal models of diabetic and non-diabetic kidney
diseases have shown that PPAR-γ agonists reduce albuminuria
and ameliorate renal injury due to their anti-inflammatory and
anti-fibrotic effects [6,15-17]. In mesangial cells, PPAR-γ
agonists inhibit fibronectin and collagen syntheses, MCP-1
secretion, and cell growth [18]. Our results also showed that
rosiglitazone inhibited MCP-1 expression. Retinoic acid also
protects against various renal injuries by inhibiting
inflammatory and fibrotic changes. Retinoic acid inhibits
MCP-1 expression, inducible nitric oxide synthase, fibronectin,
and plasminogen activator inhibitor-1 in mesangial cells
[10,19-21]. Retinoic acid has also been shown to reduce
glomerulosclerosis and renal injury in animal models of kidney
disease as well as in type 2 diabetic rats [22-25]. The results
from our study on the anti-inflammatory effects of ATRA
agree with those in previous reports.

Heterodimers of PPAR-γ and RXR bind to specific PPAR
response elements, thereby regulating numerous gene
expressions [11]. There are a few evidences that activation of
both PPAR and RXR results in synergistic protection against
tissue injuries. Activation of PPAR-γ/RXR induces insulin
sensitization in diabetic rats [26], inhibits proliferation of
stellate cells [27], blunts pro-inflammatory and pro-invasive
phenotypes of tumor-associated fibroblasts [28,29], and
inhibits inflammatory mediators such as nuclear factor-kappa
B and interleukin 6 in breast cancer cells [30]. Even though
PPAR and RXR agonists have beneficial effects, they are
associated with well-known side effects that limit their
application [31,32]. Therefore, combination therapies can be
used to obtain therapeutic efficacy with minimal side effects.
Our results showed that combined treatment with PPAR-γ and
RXR agonists reduced MCP-1 expression more than using
either treatment alone.

There are several limitations of combined treatment with
PPAR-γ and RXR agonists. Firstly, gene transcriptions can be
activated or repressed by co-factors and ligands due to the
treatment. Ligands can affect the activities of PPAR-γ/RXR by
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acting as co-repressors or co-activators [33,34]. Protein
flightless-1, which is a modulator of PPAR-γ, interrupts the
formation of the PPAR-γ/RXR complex and results in
repression of transcriptional activity [35]. Secondly, several
PPAR and RXR isoforms are expressed in a nephron segment-
specific manner [36], which can result in different effects
according to different combinations of the isoforms [37].
Thirdly, the effects of RXR agonists are affected by the
activation of PPAR-γ. This is because RXR agonists impair
arterial monocyte recruitment through PPAR-γ activation [38]
and PPAR-γ knockout cell lines have shown blunted responses
to RXR agonists [39]. Lastly, unexpected side effects can occur
from the combined treatment since some authors found that the
combined treatment was harmful in type 1 diabetic rats (data
not shown). The beneficial and harmful effects of the
combined treatment may depend on the selected dose of each
agonist.

Suboptimal doses may constitute a new alternative and
effective therapy. Escudero et al. [40] reported that, combined
treatment with rosuvastatin and bexarotene at suboptimal doses
reduced the serious dose-related adverse effects of the two
drugs and controlled vascular inflammation effectively. Our
results also revealed that the combined treatment showed
synergy between the two agonists in controlling MCP-1
expression. Therefore, combined suboptimal doses of PPAR-γ
and RXR agonists may produce reno-protective effects;
however, further studies are required to clarify the combined
effect of the agonists in pathological conditions.
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