ASSESSING AND COMPARING THE IMPACT OF DIGITAL CONVENIENCE AND EMOTIONAL EXPERIENCE AMONG THE SMART STORE SHOPPERS OF ZEPTO IN INDIA

Jaya Sri Thota, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh Sivakoti Reddy M, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh

ABSTRACT

This study aims to explore the key motivational drivers influencing consumer behaviour on quick commerce platforms such as Zepto in India. It focuses on evaluating the trade-off between digital convenience and emotional experience in shaping the shopping preferences of smart store users. The survey measured consumer preferences, perceived convenience, emotional satisfaction, and purchasing behavior. Statistical techniques including factor analysis and regression modeling were used to identify significant predictors of shopper motivation.

The findings reveal that while digital convenience characterized by speed, app usability, and delivery accuracy remains the primary motivator, emotional factors such as brand trust, personalized communication, and customer engagement significantly enhance consumer loyalty and frequency of usage. A notable segment of users values emotional connection nearly as much as functional convenience, especially in repeat purchases and high-involvement categories.

Keywords: Quick Commerce, Zepto, Consumer Motivation, Digital Convenience, Emotional Experience, Smart Store Shoppers, India, E-Commerce Behavior.

INTRODUCTION

Shopping in retail establishments has undergone a revolutionary transformation, becoming more effective, efficient, and consumer-centric thanks to advancements in smart retail technologies. These innovations are designed not only to enhance the overall shopping experience but also to streamline critical business processes, reduce operational costs, and significantly boost revenue. Retailers are increasingly integrating cutting-edge technologies such as radio frequency identification systems (RFIDs), near field communication systems (NFCs), smart shopping carts, and self-checkout systems to meet the evolving demands of techsavvy consumers. These solutions offer unparalleled convenience, enabling shoppers to quickly locate items, receive personalized recommendations, and complete transactions seamlessly without the need for direct human interaction. Additionally, these technologies allow businesses to gather and analyze vast amounts of consumer data, providing actionable insights that improve inventory management, marketing strategies, and customer engagement. The combination of functional efficiency and innovative consumer experiences positions smart retail technologies as a critical driver in reshaping the global retail landscape.

Major industry players, including AmazonGo, SmartMart, MetroGroup Futurestore, and Boekhandels Groep Nederland (BGN), are at the forefront of this technological revolution, leveraging smart retail systems to establish a competitive edge. AmazonGo, for instance, has

redefined traditional shopping paradigms with its "Just Walk Out" technology, eliminating the need for checkout lines altogether. Similarly, MetroGroup Futurestore incorporates augmented reality and NFC to create a fully immersive shopping environment, enhancing customer satisfaction and loyalty. According to a Grand View Research (2021) report, the global smart retail market was valued at \$19.5 billion in 2020 and is expected to grow exponentially at a compound annual growth rate (CAGR) of 27.7%, reaching an estimated \$134 billion by 2028. This rapid expansion is fueled by the increasing adoption of smart technologies by both retailers and consumers, driven by their ability to offer unmatched convenience and efficiency. With evolving consumer expectations and technological capabilities, the future of smart retail holds immense potential, paving the way for new business models, innovative customer experiences, and sustainable growth in the retail industry.

Customers are chiefly driven by functional advantages when purchasing from conventional brick-and-mortar merchants, encompassing product value, the in-store ambiance, and personal attention. Smart stores provide a distinctive experience devoid of sales personnel, yet maintain communication with customers to facilitate product recommendations and checkout processes, despite the purchase procedures in conventional stores being generally similar to those in smart stores. 84% of customers said they prefer shopping at smart stores over traditional ones, according to an Amazon survey Becker, et al. (2012).

Prior studies on traditional retail purchasing have predominantly focused on the functional benefits offered by physical stores, including product quality, pricing strategies, and optimal store locations (Chocarro et al., 2013; Loyde et al., 2014; Verhagen, 2009). These studies emphasized the utilitarian aspects that contribute to customer satisfaction and decisionmaking, such as tangible product attributes, value for money, and the convenience of accessibility. However, this narrow focus often overlooked the intangible aspects of retail shopping, particularly the emotional and experiential dimensions that contribute to consumer delight and loyalty. In contrast, smart retail technologies are redefining these parameters by offering a range of innovative interactions that go beyond traditional shopping experiences. Technologies like smart shopping carts, interactive displays, augmented reality tools, and contactless checkout systems allow customers to engage with products in ways that are both efficient and enjoyable. By fostering curiosity and offering a personalized, immersive environment, smart stores are uniquely positioned to cater to the dual motivations of modern shoppers: functional needs and hedonic desires. This study thus seeks to delve deeper into hedonic motivation—one that creates positive emotional experiences—to complement the utilitarian factors traditionally emphasized in retail studies Babin, et al. (1994) Son, & Kwon, (2024).

Amid this transformation, a novel trend called quick commerce (Q-commerce) has emerged, fueled by the rapid evolution of e-commerce and the increasing consumer demand for instant gratification. Q-commerce distinguishes itself from traditional e-commerce by delivering products at remarkable speeds, typically within 10 to 30 minutes. This paradigm shift is powered by advancements in on-demand logistics, enhanced supply chain efficiency, and consumer-facing technologies that enable seamless ordering and delivery. Unlike conventional e-commerce, which focuses on scheduled deliveries that align with consumer convenience, Q-commerce thrives on immediacy and urgency, offering a frictionless shopping experience. One of the most captivating aspects of Q-commerce is its potential to reshape consumer behavior, particularly through the promotion of impulsive buying. Impulsive buying, a well-documented psychological phenomenon, occurs when consumers make unplanned purchases driven more by emotions and situational triggers than by deliberate consideration. Factors such as ease of use, product availability, and persuasive marketing strategies amplify this behavior. Q-commerce platforms further intensify these impulses by incorporating urgency tactics, such as limited-time offers, countdown timers, and personalized product

recommendations, which prompt consumers to act swiftly. This blending of utilitarian convenience and emotional triggers places Q-commerce at the forefront of modern retail, showcasing its ability to cater to a diverse range of consumer motivations while profoundly influencing the way individuals approach shopping in the digital era.

LITERATURE REVIEW

Digital Stores

"Self-Monitoring, Analysis, and Reporting Technology" is the full form of the acronym "SMART" (Netlingo, 2021). This concept underscores the ability of smart retail technology to monitor consumer behavior, analyze large-scale data, and generate actionable insights that enhance operational efficiency and customer satisfaction. By leveraging these advanced capabilities, retailers are not only improving the shopping experience but are also revolutionizing traditional business models to meet the demands of the modern consumer. SMART technologies enable retailers to track the types of goods and services utilized by customers, providing valuable data that informs inventory management, personalized marketing, and dynamic pricing strategies. This approach ensures a tailored and efficient shopping experience, fostering greater customer loyalty and repeat business Agarwal and Karahanna, (2000).

Recently, brick-and-mortar stores have integrated a variety of advanced smart retail technologies to create hybrid shopping environments that combine the physical and digital worlds. These include innovations such as radio frequency identification systems (RFIDs) for real-time inventory tracking, near-field communication systems (NFCs) for seamless payment processing, augmented reality interactive technology systems (ARTs) for immersive product visualization, intelligent shopping carts that guide customers through personalized recommendations, and self-checkout systems that eliminate long queues. These tools not only streamline the shopping process but also empower customers with greater control and convenience. By embedding these technologies into traditional retail setups, businesses are redefining the shopping experience, making it more engaging, interactive, and efficient. This fusion of technology and retail has transformed the industry, setting new benchmarks for customer expectations and paving the way for smarter, more adaptive business practices.

According to Fan et al. (2020), smart stores are physical retail establishments designed to offer a highly customized, engaging, and interactive shopping experience. These stores achieve this by incorporating smart retail technologies such as intelligent shopping carts, self-checkout systems, and advanced recommendation engines. These innovations empower customers by making their shopping journeys more seamless and personalized, minimizing friction and enhancing satisfaction. By leveraging technology to deliver convenience and adaptability, smart stores bridge the gap between traditional retail environments and modern consumer expectations, creating a more dynamic and consumer-focused approach to shopping Astini et al. (2024).

Similarly, Sainsbury's defines a smart store as a retail space that integrates contemporary technologies to elevate the overall shopping experience. These stores facilitate easy and secure payment processing through current accounts, provide real-time product recommendations tailored to individual preferences, and enable precise item tracking for efficient inventory management. This technology-driven environment enhances operational efficiency and enriches customer engagement, offering a perfect blend of convenience and personalization. By incorporating such features, smart stores are not merely a place to shop but a transformative experience, setting a new standard for the future of retail Chang and Chen, (2021); Chang et al. (2019).

The advent of smart stores is transforming the retail landscape, enhancing the shopping experience by integrating cutting-edge technologies like self-checkout systems and intelligent shopping carts. These innovations are designed to streamline the shopping process, offering customers a more efficient and enjoyable way to complete transactions. Self-checkout systems, for example, have revolutionized the traditional retail model by allowing customers to independently scan and pay for their items, bypassing the need for human cashiers. This selfservice option speeds up the checkout process, reduces waiting times, and provides customers with more control over their shopping experience. Additionally, these systems are increasingly equipped with advanced features like contactless payment options, which have become especially important in a post-pandemic world, where health and safety concerns have heightened the demand for more hygienic, touch-free solutions. Intelligent shopping carts further enhance the convenience of smart stores by offering a more interactive and personalized shopping experience. These carts are embedded with various technologies, including sensors, RFID tags, and cameras, which allow them to automatically detect and track items as they are added. This capability eliminates the need for customers to manually scan items during checkout, thus reducing friction in the purchasing process. Furthermore, intelligent carts can provide real-time price updates and even suggest complementary products based on customer preferences or previous purchases, making the entire shopping experience more tailored and intuitive.

Smart stores facilitate a unique dyadic interaction between customers and retail technology, which is fundamental to their ability to provide personalized shopping experiences. Through the integration of smart retail technologies, these stores can gather and analyze vast amounts of data on customers' behaviors, preferences, and purchase history, allowing them to present highly targeted product recommendations and promotional offers. For instance, when a customer enters a smart store, their loyalty card or mobile app can be used to identify them, enabling the store's system to offer personalized discounts or suggest items that align with their past purchases. This level of personalization not only makes the shopping experience more convenient but also creates a deeper sense of connection between the customer and the brand. Personalized product recommendations and targeted promotions make customers feel valued, enhancing their overall satisfaction and increasing the likelihood of repeat visits. Moreover, the insights gained from these interactions allow retailers to optimize store layouts and product offerings in real-time, adjusting stock levels based on demand and customer preferences. This dynamic and data-driven approach not only improves operational efficiency but also elevates the customer experience by ensuring that the products and services offered are always aligned with what the consumer wants. The ultimate result is a seamless shopping journey where technology enhances the human aspect of shopping, making it more enjoyable, personalized, and efficient for all involved. As such, the installation of smart stores is seen as a significant step forward in improving the convenience and pleasure of consumers' shopping experiences, paving the way for a more engaging and efficient future of retail (Roy et al., 2020).

The top four elements influencing consumers' purchasing decisions include location and shopping(Shorr,2018). Conversely, hedonic motivation describes how much consumers like their buying experiences in smart retailers. In addition to goal-oriented purchasing, customers may buy because they want to have fun, play, enjoy themselves, and have an experience.

Previous research on smart retail technology has primarily concentrated on the utilitarian motives driving its adoption, focusing on factors such as practicality, efficiency, and user-friendliness (Adapa et al., 2020; Fazal-e-Hasan et al., 2021; Nikhashemi et al., 2021; Roy et al., 2017, 2020). These studies emphasize the functionality of smart technologies, particularly in how they simplify the shopping process by automating tasks like checkout, inventory management, and product tracking. For example, the use of self-checkout systems

and intelligent shopping carts has been praised for enhancing customer convenience by reducing wait times and increasing operational efficiency. Such technologies enable a frictionless shopping experience, where customers can navigate through the store, select items, and pay without the need for traditional human interactions. This utilitarian perspective on smart retail technologies highlights their role in making shopping faster and more efficient, addressing the growing demand for seamless, time-saving solutions in an increasingly fast-paced world. However, while the practicality and convenience of these systems are central to their appeal, they only tell part of the story. Utilitarian motives focus on the functional aspects of technology, but they fail to account for the more emotional and experiential dimensions of the shopping journey, which are just as crucial in shaping customer satisfaction and loyalty Raj & Das, (2025).

In contrast to the utilitarian perspective, the hedonic motivations driving the use of smart retail technology have been underexplored in prior research. Some studies have attempted to define hedonic motivation through constructs like novelty, enjoyment, or control, but these attempts often present an oversimplified view of the broader emotional and sensory experiences that customers encounter in smart stores. As illustrated in Table 1, a singular focus on constructs like novelty or enjoyment does not fully capture the rich and multifaceted nature of hedonic motivation in smart retail contexts. Customers shopping in smart stores not only seek practical benefits but also desire a delightful, gratifying, and immersive experience that engages them on a deeper emotional level. Smart retail technology, by offering personalized experiences, interactive interfaces, and seamless integration of digital and physical elements, allows customers to enjoy a sense of novelty, control, and engagement that is not possible in traditional retail environments. For instance, personalized recommendations based on previous purchases or real-time updates on product availability can make the shopping experience feel more tailored, dynamic, and satisfying. The integration of immersive technologies, such as augmented reality or interactive displays, can further enhance the hedonic aspects of the experience, transforming routine shopping into a more entertaining and enjoyable activity. In this regard, smart stores that eliminate the need for sales interactions must prioritize not only the functional aspects of the customer journey but also the emotional and sensory experiences that contribute to customer delight. By focusing on creating a pleasurable and immersive environment, smart stores can offer an experience that goes beyond mere convenience, ultimately fostering a deeper emotional connection with customers. This shift in focus from utilitarian to hedonic motivations is essential for retailers aiming to differentiate themselves in an increasingly competitive marketplace where the customer experience is the key to success. Smart Grocery stores, such as those advertised by Sainsbury, have revolutionized the traditional shopping experience by leveraging advanced technology to provide not only efficient purchasing activities but also a personalized, smooth, and engaging environment for customers. This blend of technological innovation and customer-centric design enhances the overall shopping experience, aligning with the growing consumer desire for convenience, speed, and individualized attention. The incorporation of smart retail technology, including self-checkout systems, intelligent shopping carts, and personalized product recommendations, allows customers to complete their purchases with minimal effort while enjoying a highly tailored shopping journey. Such technology integrates seamlessly into the store's ecosystem, transforming the traditional grocery store experience into one that is both practical and engaging. Customers are able to scan items, check prices, and pay for their goods without the need for human interaction, all while receiving personalized product suggestions based on their purchase history and preferences. This sophisticated use of technology not only reduces friction but also caters to the modern consumer's need for a hassle-free shopping experience Belk, (1975).

The theoretical framework that best explains the impact of these technologies on customer behavior is the Hedonic System Acceptance Model (HSAM), which highlights both utilitarian and hedonic motivations behind technology adoption. The HSAM posits that customers are driven by both goal-oriented and enjoyment-based factors during their shopping journey. On one hand, the utilitarian motivation centers around the practical benefits that smart technologies provide, such as time-saving, efficiency, and ease of purchase. These aspects are particularly important in grocery shopping, where customers often seek convenience and speed due to time constraints. On the other hand, the hedonic motivation is focused on the pleasurable, engaging, and enjoyable aspects of the shopping experience. In the case of smart stores like Smart Grocery, technology plays a pivotal role in enhancing the hedonic experience by providing customers with more enjoyable interactions, such as personalized recommendations, engaging displays, and interactive features. The integration of these technologies not only makes the shopping process more efficient but also makes it a more immersive and delightful experience. For instance, customers can receive tailored discounts or promotions based on their previous purchases, creating a sense of exclusivity and satisfaction. This personalized engagement taps into the emotional and hedonic desires of customers, providing them with an experience that goes beyond basic utility and appeals to their desire for enjoyment, control, and novelty. Thus, the smart grocery store concept encapsulates both the utilitarian and hedonic dimensions of consumer motivation, offering a comprehensive shopping experience that is both functional and emotionally rewarding Stojanov, (2022).

The situational parameters examined in this study are carefully mapped to the five essential components that define the customer experience in smart stores: product, price, promotion, location, and human influence. These elements are crucial in shaping how customers interact with and perceive the benefits of smart retail technology. Product and price are central to the shopping decision, as customers typically assess whether the quality and cost of products meet their expectations before making a purchase. In smart stores, advanced technologies such as personalized recommendations and real-time pricing allow customers to make more informed decisions. Smart systems, which analyze customer data like past purchases and preferences, help ensure that the right products are promoted at the right price points. These systems also allow for dynamic pricing, where prices may adjust based on demand, time of day, or promotions. This level of transparency builds customer trust, as it ensures they are receiving competitive prices and high-quality goods, fostering a more satisfying shopping experience. Unlike traditional retail environments where the decisionmaking process can be slowed by lack of information, smart stores provide customers with immediate, comprehensive details about product quality, price comparisons, and availability, making the purchase process faster and more efficient. The promotion component also plays a significant role in smart stores. Unlike the generic promotions seen in traditional retail spaces, smart retailers employ personalized marketing strategies that suggest products based on customers' historical buying patterns and preferences. For example, a customer who frequently buys eco-friendly products might receive promotional offers for new sustainable items. These targeted recommendations enhance the shopping experience by offering customers value through tailored deals, increasing the likelihood of additional purchases and improving customer satisfaction. Smart retailers leverage data analytics to anticipate customer needs and deliver promotions that feel more like a personalized service rather than a generic sales pitch. This personalized approach to promotion not only drives sales but also strengthens customer loyalty, as customers feel that their specific needs and preferences are understood and catered to. Location, in the context of smart retail, refers to the convenience and ease with which customers can navigate the store. Through technologies such as smart shopping carts, digital signage, and mobile apps, smart stores optimize the customer's ability to quickly locate products and complete their purchases with minimal effort. This is a critical factor in a fastpaced retail environment where time is of the essence for many consumers. Unlike traditional stores where customers may waste time searching for products or waiting in long checkout lines, smart stores prioritize efficiency. With self-checkout stations and real-time product tracking, customers can quickly find items, scan them, and pay without needing to interact with a cashier. The integration of these technologies makes the location of items in the store less important than the convenience of accessing them through digital tools, thereby elevating the overall shopping experience. As a result, the location component in smart stores is less about the physical arrangement of goods and more about how quickly and effortlessly customers can access and purchase products. Finally, human influence is notably absent in smart retail environments, which differentiates these stores from traditional ones. In conventional retail settings, salespeople guide customers, offer assistance, and provide recommendations. However, in smart stores, these functions are replaced by technology, such as artificial intelligence (AI) and machine learning systems that provide real-time assistance and personalized product suggestions. The role of human salespeople is minimized, with the technology-driven systems taking over the customer service aspect of the shopping experience. Smart stores leverage AI to analyze customer behavior, recommend products, and assist in checkout, reducing the need for human interaction. While some level of human presence may remain for complex inquiries or special requests, the primary function of guiding and assisting customers is handled by the technology embedded within the store. This shift eliminates human influence as a variable in the customer experience, making it entirely technology-driven. The reliance on automation and AI not only streamlines the process but also ensures that the customer experience is consistent, efficient, and free from human error, thereby reshaping how retail spaces operate.

In this study, the components of product, price, promotion, location, and human influence are essential for understanding how smart retail technologies impact customer behavior and satisfaction. By replacing traditional human roles with advanced technological solutions, smart stores not only offer a more efficient shopping experience but also cater to the increasing demand for personalized, convenient, and engaging retail environments. Each of these components plays a distinct role in enhancing the overall shopping experience, and together, they provide a framework for understanding how customers interact with smart retail technologies. The ability to receive personalized product recommendations, transparent pricing, and seamless transaction processes all contribute to a more satisfying and immersive shopping journey. At the same time, the exclusion of human influence from the equation underscores the pivotal role of technology in shaping modern retail. As the retail landscape continues to evolve, it will be increasingly important for retailers to integrate these technological components effectively, ensuring that they meet the ever-changing demands of the modern consumer. The shift towards technology-driven shopping experiences marks a significant departure from traditional retail models, creating new opportunities for both retailers and customers to engage in more meaningful and efficient ways. Ultimately, smart stores represent a paradigm shift in how consumers shop, placing greater emphasis on the convenience, personalization, and efficiency that technology can offer, all while minimizing human interaction and streamlining the entire retail experience.

This study suggests that situational factors in smart retail environments can be classified into four distinct categories, each with significant implications for marketing management: task definition, temporal perspectives, social surroundings, and physical surroundings. The first category, task definition, includes critical elements like product quality and pricing. These factors directly influence a customer's decision-making process by providing the necessary information to determine whether a product meets their expectations in terms of both value and functionality. In smart stores, these aspects are enhanced through technology such as real-time pricing updates, personalized product recommendations, and detailed product information

available at the touch of a button. By offering transparency and easy access to quality assessments, smart stores enable customers to make informed, efficient purchasing decisions. The second category, temporal perspectives, refers to the speed at which customers can complete their shopping experience, often termed shopping velocity. In the context of smart retail technology, shopping velocity is directly influenced by features like self-checkout stations, intelligent shopping carts, and mobile payment solutions. These technologies minimize wait times, streamline the checkout process, and allow customers to quickly find and purchase items, thus enhancing the efficiency of the shopping experience. Customers today value time efficiency, and smart stores that optimize shopping velocity cater to this need, providing a seamless and swift experience that reduces the effort and time traditionally spent in physical stores. The third category, social surroundings, encompasses elements like product endorsements, which influence customer behavior by shaping perceptions of product quality and desirability. In smart stores, this influence is often facilitated through personalized recommendations and social proof, such as customer reviews, ratings, or promotions based on customer preferences. Smart systems analyze individual shopping patterns and provide tailored product endorsements, ensuring that customers receive suggestions that align with their tastes and previous buying habits. This form of social influence, driven by algorithms rather than direct human interaction, enhances the hedonic aspects of shopping, as customers feel that the store understands their needs and is offering products they are likely to enjoy or find valuable. Lastly, physical surroundings focus on the convenience of the store's location, or more accurately, the convenience of navigating the store and accessing products quickly and efficiently. In a smart store, physical surroundings are optimized through technologies that make it easier for customers to find products, navigate the store, and complete their purchases. From digital store maps to real-time inventory updates, smart stores significantly improve the physical layout by integrating digital tools that guide customers to the items they seek, enhancing the overall convenience and reducing the physical effort involved in the shopping experience.

This study further conceptualizes utilitarian motivation as a formative second-order construct, meaning that it is derived from and influenced by the five situational components outlined above. These components—product quality, pricing, shopping velocity, product endorsements, and convenience—are all integral to utilitarian motivation in smart stores, as they encapsulate the functional benefits that customers derive from their shopping experience. Utilitarian motivation in this context refers to the practical aspects of shopping that emphasize efficiency, convenience, and the fulfillment of specific needs. For example, when customers encounter a smart store where products are easily accessible, prices are transparent, and the shopping process is quick and efficient, they are more likely to feel that their functional needs are being met. These situational components work in harmony to create an environment where the primary goal is to provide customers with the tools and systems needed to complete their shopping activities with maximum ease and minimal effort. By conceptualizing utilitarian motivation as a second-order construct, this study highlights the interconnectedness of these situational factors, showing that each component contributes to the broader experience of functional benefit that customers seek in smart retail environments. For instance, if the task definition (product quality and pricing) is aligned with customer expectations, and shopping velocity is optimized, the customer's utilitarian motivation to complete their purchase becomes stronger. Similarly, product endorsements, rooted in social surroundings, can enhance the sense of utility by providing customers with confidence in the products they are purchasing. This conceptualization not only underscores the importance of functional benefits in shaping customer satisfaction but also illustrates how the integration of situational components within the smart retail context can collectively influence the overall shopping experience. Ultimately, understanding utilitarian motivation through this framework provides deeper insights into the factors that drive customer behavior in smart stores, helping retailers refine their strategies to cater to the practical needs of today's consumer.

Consumers in smart stores can leave without going through the traditional checkout procedure, making use of innovative technologies such as wearable devices or smartphones to complete their payments. This seamless checkout process is made possible by advanced systems that are designed to facilitate purchases quickly and effortlessly, enhancing customer convenience and streamlining the entire shopping experience. However, the implementation of these technologies introduces an important challenge: customers' concerns about their ability to adapt to and effectively navigate new shopping systems. As smart retail environments continue to evolve, many customers are still hesitant to embrace these technological innovations, as they fear that they might struggle to learn how to use them. Research has shown that when consumers are exposed to new technology, their ability to understand and engage with the system can directly impact their overall satisfaction (Roy et al., 2020). If a customer is unable to intuitively navigate the purchasing process or encounters difficulties while learning how to interact with the technology, it can lead to frustration and a negative shopping experience. This discomfort can decrease both the effectiveness of the technology and the enjoyment of the shopping process, which ultimately diminishes the likelihood of repeat visits and customer loyalty. Therefore, if smart stores are to succeed in integrating advanced technology into the shopping experience, it is essential for retailers to ensure that the systems they implement are user-friendly and easy to navigate, particularly for customers who may not be as tech-savvy. The learning curve should be minimal, and the technology should be intuitive, offering clear guidance throughout the purchasing process to alleviate any potential confusion or anxiety.

Conversely, when consumers perceive smart retail technology as user-friendly and accessible, their motivation to engage with the technology and make a purchase increases significantly. Recent studies have shown that customer motivation is heavily influenced by the design of the user interface and the overall layout of the purchasing process in smart stores (Adapa et al., 2020; Lin, 2022; Roy et al., 2018, 2020). The smoother and more intuitive the interface, the more likely customers are to embrace the technology and make purchases with confidence. For example, simple touchscreens, clear instructions, and seamless integration with mobile payment systems can make the experience feel more natural and less overwhelming for customers. If a consumer believes that they can easily navigate the system without requiring excessive time or effort, they are more likely to complete their transaction and view the smart store experience in a positive light. On the other hand, if the interface is overly complex or cumbersome, customers may abandon their purchase or avoid using the technology altogether. This highlights the importance of user experience (UX) design in smart retail technology ensuring that each step in the purchasing journey is as simple and straightforward as possible. Additionally, research has shown that motivation is also tied to how well the technology enhances the overall shopping experience. For instance, if a smart store uses technology to deliver personalized recommendations, offers convenient checkout options, and provides realtime product availability updates, customers are more likely to perceive these features as adding value to their shopping journey. When the purchasing process is designed to prioritize convenience and ease of use, customers feel more empowered and satisfied with their experience, ultimately driving greater adoption and higher sales in smart stores. Thus, by focusing on user-friendly technology and an intuitive shopping process, retailers can significantly boost customer engagement, foster positive experiences, and increase the likelihood of repeat purchases.

Customers' assessments of product quality are referred to as merchandise quality. Customers must comprehend the characteristics, perks, and advantages of the product they are purchasing before making a purchase. Therefore, the product's quality must meet the needs and

desires of the clients (Dodds et al., 1991). Customers may decide to make purchases through a different channel if the product quality is subpar. Put another way, the more highly a thing is regarded, the more inclined people are to buy it. Prior study has also revealed a beneficial association between goods quality and consumer happiness (Baker et al., 2002; Zeithaml, 1988). The quality of the merchandise will therefore boost consumers' utilitarian motive to shop at smart retailers.

The perceived time and effort needed to locate a smart store is referred to as location convenience. According to Jones et al. (2003), location ease affects customer satisfaction and repurchase intentions and is considered a significant competitive element in commerce and services. Because consumers must spend more money to get services, their utility declines as the distance to retail grows. Customers would have to invest a significant amount of time and effort in visiting the smart store if its location is too far away. Consumers are inclined to select a different local store. Prior research has discovered a connection between shopping efficiency and location convenience (Berry et al., 2002; Chen et al., 2018; Chiu et al., 2014; Collier et al., 2015). Convenient locations will thereby boost utilitarian motivation for smart store purchases. Shopping speed plays a crucial role in the overall customer experience within smart stores, specifically regarding the time spent in the checkout process. As shopping efficiency becomes an increasingly important factor in attracting and retaining customers, retailers must prioritize minimizing delays and ensuring that transactions are completed as quickly as possible. According to Collier et al. (2015), the efficiency of the shopping process is vital for encouraging consumers to choose smart retailers over traditional stores. In a fast-paced world where time is a valuable commodity, customers are constantly seeking ways to make their shopping experiences more convenient and less time-consuming. Research supports this notion by highlighting that long wait times have a significant negative impact on consumer behavior, influencing their purchasing decisions and overall satisfaction (Herrington and Capella, 1995; Durrande-Moreau and Usunier, 1999). Waiting in long lines or encountering delays at checkout can cause frustration, leading to an increased likelihood that customers will abandon their purchases or avoid returning to a store altogether. As such, reducing checkout wait times has become a primary focus for smart retailers who aim to streamline the shopping process and enhance customer satisfaction. The integration of advanced technology, such as self-checkout kiosks, smart shopping carts, and mobile payment systems, helps achieve faster transactions by eliminating the need for traditional cashier-assisted checkouts. These innovations not only speed up the checkout process but also minimize human error, creating a more seamless experience for customers. In addition, they allow customers to complete their transactions at their own pace, further enhancing convenience and reducing time spent in the store. As a result, the ability to check out quickly and efficiently is a compelling reason why many customers opt for smart retailers, as it directly addresses the growing demand for time-saving shopping experiences.

The importance of shopping speed and efficiency is also reflected in customers' motivations to seek out alternative shopping environments if they feel the current one does not meet their expectations for convenience and speed. Studies have shown that when consumers encounter prolonged delays in the purchasing process, they are likely to seek more efficient alternatives, further emphasizing the significant role of shopping velocity in influencing consumer behavior (Chen et al., 2018; Chiu et al., 2014; Collier et al., 2015; Palash et al., 2022). If a customer is forced to spend excessive amounts of time in a store—whether waiting to check out, struggling to locate a product, or navigating a complicated payment system—they may become dissatisfied with the shopping experience and choose to shop elsewhere in the future. In contrast, when customers experience faster transactions, they not only benefit from time savings but also associate the store with efficiency and convenience. This positive association encourages repeat visits and fosters customer loyalty, as customers are more likely

to return to a store that values their time and provides an easy, quick shopping experience. Furthermore, the utilitarian motivation to shop in smart stores increases as a result of these time-saving benefits. Customers are primarily motivated by the functional advantages of shopping, such as the ability to obtain products quickly, without the unnecessary delays and friction that often accompany traditional retail environments. In smart stores, these utilitarian benefits are amplified by the speed at which transactions are processed, offering a more satisfying and efficient shopping experience that aligns with the increasing demand for convenience. The faster customers can complete their purchases, the more likely they are to perceive the store as an attractive shopping destination that prioritizes their needs. Ultimately, the speed of shopping is an essential driver of consumer satisfaction in smart retail environments, directly contributing to higher levels of customer engagement and increased sales. As retailers continue to leverage technology to improve the efficiency of their operations, those that can provide faster, more streamlined shopping experiences will be better positioned to meet the evolving expectations of their customers and drive long-term success in the competitive retail landscape.

The concept of product suggestion in smart retail environments refers to the ability of these stores to market goods, services, and the transactional environment to specific consumers based on their individual preferences, past behaviors, and shopping patterns. This is made possible through advanced smart retail technology, which has increasingly replaced traditional interactions with salespeople. Unlike conventional stores where customers rely on sales assistants to guide their purchase decisions or recommend related products, smart stores utilize data-driven technologies that provide personalized product information and promotions to enhance the customer experience. These personalized recommendations are often delivered through in-store digital displays, mobile applications, or even directly through smart shopping carts, which track the customer's behavior and suggest products as they browse. As customers pick up products, smart retailers can offer exclusive discounts or use cross-marketing strategies to suggest related or complementary items. For example, a customer purchasing a laptop might be presented with suggestions for accessories like a mouse, keyboard, or laptop case, enhancing the overall shopping experience. This dynamic form of marketing ensures that product recommendations are directly aligned with the customer's preferences, needs, and previous purchases, increasing the likelihood of additional purchases. The utilization of personalized services has a profound impact on customers' shopping motivations by making the process more efficient and tailored to their desires. These technologies are built to recognize purchasing habits and anticipate the customer's needs, making it easier for consumers to find products that meet their expectations, ultimately improving their overall satisfaction with the store.

Further, the provision of personalized or customized services is integral to enhancing the utilitarian motivations of customers in smart stores. By offering recommendations based on past purchases or specific preferences, retailers not only cater to individual tastes but also assist customers in achieving their shopping goals more efficiently. Research has shown that when customers are presented with products that match their preferences, they are more likely to engage with the shopping process and make purchases (Collier et al., 2015; Riegger et al., 2021; Srinivasan et al., 2002). Personalized product suggestions not only fulfill a customer's immediate need for a particular item but also enhance the overall shopping experience by making it more intuitive and enjoyable. For example, a customer searching for specific products such as organic food or eco-friendly items can receive tailored recommendations for products that meet these criteria, helping them make quicker decisions and saving time on their shopping journey. The smart retail technology behind these recommendations is driven by data analytics, artificial intelligence (AI), and machine learning, which continuously learn from a customer's past shopping behavior to offer increasingly accurate suggestions. By personalizing the shopping experience, smart stores not only enhance consumer satisfaction but also boost

sales through up-selling and cross-selling strategies. Customers are more likely to purchase related items or try new products when these suggestions feel relevant and timely. As these personalized interactions increase, customers' utilitarian motivation to shop at smart retailers is significantly strengthened. They begin to view these stores as more efficient, more helpful, and more aligned with their personal shopping needs, making them more likely to return and recommend the store to others. Therefore, personalized product recommendations in smart retail environments do more than simply suggest items—they actively contribute to a smoother, more enjoyable shopping process that aligns with the customer's goals, further reinforcing the value of shopping in a smart retail space.

RESEARCH METHODOLOGY

Each construct's items were modified from previously published works. Davis et al. (1989) provided the model for digital convenience. From Venkatesh et al. (2003), emotional experience was modified. Five-point Likert scale is deployed to measure the customers' responses for the concerned study. However, the researcher is able to collect 709 samples for the study to compare the impact of digital convenience and emotional experience among the digital shoppers of the study. The researcher deployed convenience sampling method to collect the required samples of the study. Furthermore, the researcher deployed paired t-test to examine the impact of concerned variables.

Data Analysis

The study examines the influence of Digital Convenience and Emotional Experience on the shopping behavior of selected smart store users on Zepto, employing a paired t-test for statistical analysis. This analytical method is chosen to evaluate the mean differences between these two variables and determine their significance in shaping consumer preferences. By comparing the mean scores of Digital Convenience and Emotional Experience, the study provides a nuanced understanding of which factor exerts a greater influence on shopper motivation.

The paired t-test results reveal key insights into the preferences of smart store shoppers. Digital Convenience, characterized by factors such as speed, accuracy, and ease of use, shows a higher mean score compared to Emotional Experience, which encompasses elements like personalized communication, brand trust, and emotional engagement. The statistical analysis quantifies the difference between these two factors, with Digital Convenience emerging as the dominant motivator for the selected group of shoppers.

The results presented in tabular form indicate that Digital Convenience significantly impacts consumer behavior compared to Emotional Experience. The higher mean score for Digital Convenience highlights its pivotal role in quick commerce platforms, where functionality and efficiency are paramount. However, the study does not dismiss the importance of Emotional Experience, as it plays a complementary role in fostering deeper customer connections and long-term loyalty, particularly for repeat shoppers. Through these findings, the analysis sheds light on the interplay of practical and emotional factors in shaping modern consumer behavior in the quick commerce industry. The results are presented the following tables.

Table 1 PAIRED SAMPLE STATISTICS OF THE SELECT SMART STORE SHOPPERS ON						
ZEPTO						
Paired Samples Statistics						
	Mean	N	Std. Deviation	Std. Error Mean		

Digital Convenience	4.2895	160	0.68241	0.05535
Emotional Experience	3.5877	160	1.07722	0.08737

The above table 1 depicted that the mean score of the Digital Convenience is found to be 4.2895 and Emotional Experience is found to be 3.5877. The standard deviation values are 0.68241 and 1.07722 before and after respectively. The standard error mean values are found to be 0.05535 and 0.08737 respectively.

Table 2					
PAIRED SAMPLE CORRELATION OF SELECT SMART STORE SHOPPERS ON ZEPTO					
Paired Samples Correlations					
	N	Correlation	Sig.		
Digital Convenience & Emotional Experience	160	0.571	0.000		

Table 2 highlights the paired sample correlation between Digital Convenience and Emotional Experience among select smart store shoppers on Zepto. The correlation value of 0.571 indicates a moderate positive relationship between the two variables. This suggests that while Digital Convenience and Emotional Experience are distinct constructs, they are interconnected to a certain degree, with improvements in one likely influencing perceptions of the other. The significance of this relationship is underscored by the p-value of 0.000, which confirms that the observed correlation is statistically significant and not due to random chance.

The moderate correlation implies that both Digital Convenience and Emotional Experience play integral roles in shaping the shopping behavior of Zepto users. While convenience features such as speed and app usability drive functional satisfaction, emotional elements like personalized engagement and trust amplify the overall shopping experience. This relationship suggests a complementary dynamic, where emotional connections can enhance the utility derived from convenience, and vice versa. Platforms like Zepto can leverage these insights to design strategies that simultaneously optimize digital functionality and foster meaningful emotional engagement, ensuring a well-rounded and appealing consumer experience.

Table 3 PAIRED SAMPLE TEST RESULTS OF SELECT SMART STORE SHOPPERS ON ZEPTO: PAIRED SAMPLES TEST							
	Paired Differences						
	Mean	Std. Deviation	Std. Error Mean	95% Interval Difference Lower	Confidence of the Upper	t	Sig. (2-tailed)
Digital Conveni ence – Emotion al Experei nce	0.70175	0.88663	0.0719	0.5596	0.8438	9.758	0.000

The paired sample test results for select smart store shoppers on Zepto, as presented in Table 3, highlight significant findings regarding the difference between Digital Convenience and Emotional Experience. The mean difference between the two variables is calculated as 0.70175, indicating a notable disparity favoring Digital Convenience. The standard deviation of 0.88663 and the standard error mean of 0.0719 reflect the variability and precision of the

data. The bootstrapping results further support these findings, with the lower control limit at 0.5596 and the upper control limit at 0.8438. Importantly, the absence of zero within this confidence interval confirms that the results are statistically significant.

Additionally, the t-value of 9.758 and the p-value of 0.000 underline the strength of the statistical evidence, indicating a highly significant difference between the two variables. This finding reinforces the conclusion that Digital Convenience has a stronger impact on shopper behavior compared to Emotional Experience for the select group of Zepto users. These results validate the hypothesis that functional attributes such as speed and usability dominate in motivating consumer preferences, although emotional factors still hold relevance. Platforms like Zepto can utilize these insights to prioritize convenience-related features while continuing to enhance emotional engagement strategies Datta & Bose (2024).

Discussion

The test results showed a significant impact of Digital Convenience rather the Emotional Experience in select Smart Store Shoppers on Zepto. The P- value is less than 0.05 and the mean difference is equal to 0.702. The results therefore corroborate that fact the Select Smart Store Shoppers on Zepto Digital Convenience are engendering effective results. Hence, we conclude that the proposed null hypothesis (H1₀) is disproved and alternative hypothesis (H1) is accepted.

Implications for Practice

This study offers valuable insights for quick commerce platforms like Zepto, emphasizing the dual role of digital convenience and emotional experience in shaping consumer preferences. Practitioners can prioritize enhancing app usability, delivery speed, and accuracy, as these factors significantly drive consumer satisfaction and loyalty. Moreover, integrating emotional touchpoints, such as personalized recommendations and engaging communication, can cultivate deeper customer relationships. By balancing these elements, platforms can better cater to both utilitarian and hedonic shopper motivations, increasing repeat purchases and long-term brand loyalty.

Another critical implication lies in the segmentation of customers based on their motivation profiles. While some consumers prioritize digital convenience for its time-saving and seamless qualities, others value emotional connections more. Platforms can use these findings to tailor marketing strategies, emphasizing speed and efficiency for one segment and trust and personalization for the other. Employing advanced analytics and AI-driven personalization could optimize the shopping experience across diverse user groups Bridges, and Florsheim, (2008).

Finally, the findings provide a strategic framework for scaling operations while maintaining quality. As quick commerce grows, platforms must invest in technologies that support both the functional and emotional dimensions of shopping. This includes ensuring delivery reliability and fostering customer engagement through loyalty programs, feedback loops, and community-driven initiatives, which collectively strengthen the ecosystem.

CONCLUSION

This study highlights the predominant influence of digital convenience over emotional experience in motivating smart store shoppers on Zepto. While functional attributes like delivery speed and app usability are primary drivers of consumer behavior, emotional elements such as trust and personalized interactions also hold substantial importance, particularly for

fostering repeat patronage. The findings indicate a moderate correlation between these two factors, reinforcing the need for platforms to address both aspects comprehensively.

The research underscores the evolving dynamics of consumer behavior in quick commerce. The paired t-test results clearly demonstrate the statistically significant impact of digital convenience, confirming its role as a decisive factor in consumer satisfaction and loyalty. However, the growing relevance of emotional experiences suggests a broader shift in consumer expectations, highlighting the importance of a holistic shopping experience.

In conclusion, the study offers actionable insights for enhancing consumer engagement in the quick commerce industry. By leveraging a strategic blend of digital and emotional motivators, platforms can effectively address diverse consumer needs, build stronger connections, and ensure sustainable growth in a competitive market landscape.

REFERENCES

- Adapa, S., Fazal-e-Hasan, S.M., Makam, S.B., Azeem, M.M. and Mortimer, G. (2020), "Examining the antecedents and consequences of perceived shopping value through smart retail technology", Journal of Retailing and Consumer Services, Vol. 52, 101901.
- Agarwal, R. and Karahanna, E. (2000), "Time flies when you're having fun: cognitive absorption and beliefs about information technology usage", MIS Quarterly, Vol. 24 No. 4, pp. 665-694.
- Astini, R., Royanti, I., Ramli, Y., Imaningsih, E. S., & Imaroh, T. S. (2024). The Impact of Quick Commerce that Influence the Purchase Decision of E-Grocery. Przestrzeń Społeczna (Social Space), 24(1), 110-128.
- Babin, B.J., Darden, W.R. and Griffin, M. (1994), "Work and/or fun: measuring hedonic and utilitarian shopping value", Journal of Consumer Research, Vol. 20 No. 4, pp. 644-656.
- Baker, J., Parasuraman, A., Grewal, D. and Voss, G.B. (2002), "The influence of multiple store environment cues on perceived merchandise value and patronage intentions", Journal of Marketing, Vol. 66 No. 2, pp. 120-141.
- Becker, J.M., Klein, K. and Wetzels, M. (2012), "Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models", Long Range Planning, Vol. 45 Nos 5-6, pp. 359-394.
- Belk, R.W. (1975), "Situational variables and consumer behavior", Journal of Consumer Research, Vol. 2 No. 3, pp. 157-164.
- Berry, L.L., Seiders, K. and Grewal, D. (2002), "Understanding service convenience", Journal of Marketing, Vol. 66 No. 3, pp. 1-17.
- Bridges, E. and Florsheim, R. (2008), "Hedonic and utilitarian shopping goals: the online experience", Journal of Business Research, Vol. 61 No. 4, pp. 309-314.
- Chang, Y.W. and Chen, J. (2021), "What motivates customers to shop in smart shops? The impacts of smart technology and technology readiness", Journal of Retailing and Consumer Services, Vol. 58, 102325.
- Chang, Y.W., Hsu, P.Y., Shiau, W.L. and Hsu, M.C. (2019), "An empirical study on factors affecting switching intention to cloud enterprise resource planning: a comparison between public and private clouds", Journal of Global Information Management (JGIM), Vol. 27 No. 4, pp. 46-69.
- Chen, Y., Yu, J., Yang, S. and Wei, J. (2018), "Consumer's intention to use self-service parcel delivery service in online retailing: an empirical study", Internet Research, Vol. 28 No. 2, pp. 500-519.
- Chiu, C.M., Wang, E.T., Fang, Y.H. and Huang, H.Y. (2014), "Understanding customers' repeat purchase intentions in B2C e-commerce: the roles of utilitarian value, hedonic value and perceived risk", Information Systems Journal, Vol. 24 No. 1, pp. 85-114.
- Chocarro, R., Corti~ nas, M. and Villanueva, M.L. (2013), "Situational variables in online versus offline channel choice", Electronic Commerce Research and Applications, Vol. 12 No. 5, pp. 347-361.
- Datta, J., & Bose, S. (2024). A Study on the Growth Prospects of Q Commerce and Its Role Play in eCommerce Business in Present-Day India. In Sustainability in Marketing Practice (pp. 155-168). Apple Academic Press
- Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1989), "User acceptance of computer technology: a comparison of two theoretical models", Management Science, Vol. 35 No. 8, pp. 982-1003.
- Dodds, W.B., Monroe, K.B. and Grewal, D. (1991), "Effects of price, brand, and store information on buyers' product evaluations", Journal of Marketing Research, Vol. 28 No. 3, pp. 307-319.
- Durrande-Moreau, A. and Usunier, J.C. (1999), "Time styles and the waiting experience: an exploratory study", Journal of Service Research, Vol. 2 No. 2, pp. 173-186.
- Fan, X., Ning, N. and Deng, N. (2020), "The impact of the quality of intelligent experience on smart retail engagement", Marketing Intelligence and Planning, Vol. 38 No. 7, pp. 877-891.

- Fazal-e-Hasan, S.M., Amrollahi, A., Mortimer, G., Adapa, S. and Balaji, M.S. (2021), "A multi-method approach to examining consumer intentions to use smart retail technology", Computers in Human Behavior, Vol. 117, 106622.
- Raj, A., & Das, D. (2025). Optimizing Q-commerce delivery: Unravelling the interplay of fee, penalty, and rider-platform collaborative efforts. International Journal of Production Economics, 281, 109503.
- Son, E., & Kwon, K. H. (2024). Sustainable spatial strategies for mitigating air pollution in quick commerce environments. Environmental Research and Technology, 7(1), 131-139.
- Stojanov, M. (2022). Q-commerce-The next generation e-commerce. Бизнес управление, (1), 17-34.

Received: 03-Sep-2025, Manuscript No. AMSJ-25-16175; **Editor assigned:** 04-Sep-2025, PreQC No. AMSJ-25-16175(PQ); **Reviewed:** 09-Sep-2025, QC No. AMSJ-25-16175; **Revised:** 20-Sep-2025, Manuscript No. AMSJ-25-16175(R); **Published:** 29-Sep-2025