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ABSTRACT 

Agricultural insurance is one of the most useful tools for managing the financial risks 

associated with farming. However, traditional insurance has several drawbacks, specifically in 

developing countries because of high transaction costs and other challenges that may hinder the 

protection from risk. An index based insurance is more likely to be a superior and viable 

alternative to traditional insurances for many developing countries because of its independent 

and objective nature. Various weather related factors are one of the major uncertainties that 

effect crop growth and yield. In order to develop an effective weather based insurance model, 

crop yield needs to be correlated with the weather factor(s) such as rainfall. However, crop yield 

pattern may be dependent on other external factors and in general create an increasing or 

decreasing trend in the yield. In our analysis, we observe that both downtrend and uptrend exists 

in our crop yield data with a threshold in the middle and thus creates a rare trend pattern that is 

cyclical. In order to identify the explicit relationship between yield and rainfall, we detrended 

crop yield by using piecewise regression. In addition, crop yield data that are collected from the 

field are usually noisy and the relationship between weather factors and yield responses are in 

general weak. Thus, a three-period moving average smoothing technique was applied on the 

data to make the pattern of the trend more visible. Consequently, identification of proper trend 

pattern, such as, cyclical-trend rather than a simple linear trend for detrending the crop yield 

appeared to be significant in this research study. As a result, our study adds significant 

contribution in this field of research concerning the influence of unobservable factor(s) on the 

crop yield that creates threshold effect. The implication of these findings in this study is 

significant for developing an appropriate associative model for creating weather based index 

insurance. 
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INTRODUCTION 

Agricultural practices are main source of income for the large percentage of the 

population in developing countries. Farming usually tops the list among the agricultural practices 

that generate income for the majority of the population. In Ghana farming represents 36 percent 

of the country’s GDP and is the main source of income for 60 percent of the population. In 

recent years, economic growth in agricultural sectors in Ghana has surpassed growth in the non-

agricultural sectors. Income from agricultural sectors have expanded by an average annual rate of 

5.5 percent compared to 5.2 percent overall growth of the whole economy (Bogetic et al., 2007). 

Along with other developing countries, climate changes in Ghana have negatively impacted their 

agricultural economy (Etwire et al., 2013). Loss of agricultural income including destruction of 

crops and livestock drive poor farmers into complete poverty and left them with very little 

chance for reclaiming their livelihood. Indirect impacts from loss of income include sub-optimal 

management of financial risk exposures, for example, selecting low-risk, low-return assets and 

activity portfolios that reduce the risk of greater suffering, that limit growth potential and 

investment incentives. This situation deteriorates more by reduction in nutrient intake, 

withdrawing of children from school, and hiring them out to work. The problem exacerbates 

further by the reaction of financial institutions and by their decision to restrict lending to farmers 

in order to minimize exposure of financial risk. All of these consequences collectively hinder 

overall economic growth (Barnett et al., 2008).  

One of the major factor that may have varying impact on crop growth and crop yield is 

weather. However, the weather related effects on crop growth and crop yield depends on other 

agronomic factors, such as, fertilizer use, plant density, soil type, and soil condition. One of the 

major weather conditions that have an impact on crop yield is the amount of rainfall received 

during growing season (availability of water for regions without any access to irrigation). In 

many parts of the world rainfall amount affect water availability in the soil, crop type, growth 

patterns of crops, and yield outcome of crops (Al-Kaisi & Broner, 2011). The relationship 

between water availability and yield outcome is depended upon the particular crop’s sensitivity 

to water deficiency during growth stages. In general, crops are more sensitive to water deficiency 

during emergence, flowering, and early fruit formation stages. Consequently, amount and timing 

of rainfall can cause heavy crop losses for farmers. One way, in which farmers can deal with 

these losses is through agricultural insurance. It has been one of the most useful tools for 

managing the financial risks associated with farming. However, traditional insurance has several 

drawbacks, specifically in developing countries because of its high transaction costs and other 

challenges that may hinder the protection from risk for financial institutions (Skees, 2008). In 

order for an insurance to work, the purchasers must perceive that the premiums and expected 

benefits offer value; while the sellers must see opportunity for a positive actuarial (statistically 

reliable) profitable outcome over time. An example of a traditional insurance is a “yield 

insurance” that provides yield guarantee, based on regional average yield or on individual 
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historic yield, where the main risks affecting yield (e.g. drought) are comprised. In developed 

countries such as USA, this type of insurance is also called combined or multi-peril insurance. 

This type of traditional crop insurance relies on direct measurement of the loss or damage 

suffered by an individual farmer. However, field loss assessment is normally costly or not 

feasible, particularly where there are large numbers of small-scale farmers or where insurance 

markets are undeveloped and creates a challenge in the implementation process. 

An alternative to traditional insurance is index based insurance instruments. Index based 

insurance is an agricultural insurance system that pays for losses based on an index, an 

independent and objective measure that is very much correlated with crop losses due to extreme 

weather. Index insurance contracts, such as rainfall insurance, attempt to circumvent the moral 

hazard and adverse selection problems that plague traditional insurance (Skees, 2008). 

International Research Institute (IRI) for Climate and Society at Columbia University (Hellmuth 

et. al., 2009) quotes United Nations Secretary General Kofi Annan “As an innovation, index 

insurance may hold answers for some of the more obstinate problems faced by the poor and the 

vulnerable.” The International Fund for Agricultural Development (IFAD) has been working for 

many years on index insurance as part of its commitment to reduce vulnerabilities faced by rural 

smallholders and open their access to a range of financial services with the sole aim of improving 

their livelihoods (IFAD and WFP, 2010).  

In general, average crop yield is expected to stay same over time if there is no 

technological change (improvement or deterioration) or policy change that may impact crop 

yield differently. However, other external changes, such as, weather factors (e.g., drought, flood, 

hail, etc.) can impact the crop yield and may change the average crop yield over time. The 

primary purpose of crop insurance is to provide protection for farmers against yield shortfalls 

due to external factors. As a result, an associative modeling process to understand the crop yield 

pattern that accounts for yield variations over time is a preferable method. Researchers have 

explored various procedures, such as linear trend, quadratic trend, polynomial trend (see, Just 

and Weninger, 1999; Cooper, 2010) in order to detrend the crop yield over time. In addition, 

other non-linear methods, such as, piecewise regression have been applied and found to be useful 

for understanding crop yield patterns (see, Skees et al., 1997). Several studies have identified 

critical thresholds (Prasad et al. 2006) that occur due to external influences to improve their 

model’s performance. Critical thresholds occur when the outcome of a process over time is not a 

single linear (or nonlinear) function of time, but changes abruptly at some threshold point. 

Abrupt changes in the response outcome can also occur in other systems. Changes in 

management regimes may have threshold type effects if response processes are viewed over 

time. For example, a change in chemical (fertilizer) application due to environmental regulation 

may cause a threshold in the long-term crop yield dynamics. In this paper we apply piecewise-

regression model to detrend crop yield data that are effective in modeling abrupt threshold. 
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DATA AND RESEARCH METHODOLOGY 

Crops that are likely to be suitable for weather based index insurance include rain-fed 

maize and rice. Crop yield estimation can be done with crop simulation models or empirical 

associative statistical models relating crop yield with explanatory variables, such as rainfall. 

These associative models performance generally improve after trends are eliminated from the 

crop yield. Therefore, the primary focus of this paper is to provide a statistical technique that 

may effectively eliminate or at least reduce the unknown trend effect from the crop yield. By 

using this technique, an absolute relationship between crop yield and weather factor “rainfall” 

can be observed explicitly. Adequate formulation of the response function is very important for 

understanding crop yield pattern and identification of external association. Crop yield data that 

are collected from the field are usually very noisy and the relationship between weather factors 

and yield responses are in general unclear due to amalgamated variations. To address this 

variations, we have used three-period moving average (MA (3)) smoothing technique both for 

the crop yield and the rainfall data, so the yield pattern and its trend are easily discernible. 

Moreover, it is necessary to take into account the diminishing effects of water need and the 

monotonically increasing nature of the yield response function. We also assume that the higher 

the rainfall amount, the higher the yield, until at some point the added rainfall reach a saturation 

point and does not improve the yield further. Therefore, we formulate the response function as a 

quadratic equation whenever feasible. To be specific, we formulated the response function as 

either linear or quadratic function of rainfall on the detrended yield. We carried out the 

detrending of yield by applying piecewise regression.  

For this study, we have collected data from The Ministry of Food & Agriculture, the 

main government organization responsible for implementing agricultural policy in Ghana. Their 

statistical service department is an independent government department that is responsible for the 

collection, compilation, analysis, publication and dissemination of official statistics in Ghana for 

general and administrative purposes. In this paper, crop yield (metric tons of crop production per 

hectare) refers to the ratio of total production in a district (region) divided by total land cultivated 

in that district. The areas (regions) are administrative units called districts, as this is the scale at 

which most socioeconomic data and crop statistics are available. Rainfall data were collected in 

the rainfall station of that district and are reported in millimeters (mm).  

 Weather conditions can be a source of uncertainty when considering crop yield 

production in large areas. A robust array of research have been conducted to identify effects of 

weather factors and the uncertainty it triggers on crop yield by researchers modeling crop yield 

and researchers modeling climate and weather (Russel & Gardingen, 1997). Crop yield models 

concentrates on soil condition (Pachepsky & Acock, 1998) and weather factors that affect crop 

yield to ascertain the uncertainties in yield management. Whereas, the climate model researchers 

focus on identifying the weather conditions that affect crop production and quantifies the crop 

yield outcome related to climate change (Hoogenboom, 2000; Mearns et al., 2001; Semenov and 
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Porter, 1995). Many of the research related to weather factors and crop yield have suggested that 

when assessing a large area (such as a province or district), weather factors are more related to 

crop yield uncertainties than soil variations (Etwire et al., 2013; Hansen et al., 2006; Jones et al., 

2000). Northern region of Ghana is considered to be the major bread basket of the country and 

therefore our research is concentrated in that region. This region is also the most susceptible to 

weather variation specifically to the lack of rainfall. All agricultural practices including farming 

in this region are practically 100 percent dependent on rainfall (Stutley, 2010). Our study will 

explore maize production in five districts from the northern part of Ghana to correlate crop yield 

with rainfall over time.  

 

Graph1: Plot of Maize Yield for Five Districts: 1994-2007.

 
 
 

 

Graph-1 presents plot of crop yields for five different districts. These yield plots over 

time exhibit some similar patterns of downward trend for the beginning years and upward trend 

pattern for the last several years. These districts ended their downtrend of yield around year 

2002/2003. Thus, the breakpoint for piecewise regression is identified as year 2002/2003 

depending on the district. To unravel these complex trend movements in the yield, we developed 
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piecewise regression models to detrend the yield data that are applied separately to each district 

to capture the specific trend pattern for that district. This method was applied to observe the real 

relationship between crop yield and rainfall without the influence of possible external factors on 

the yield. The following paragraphs describe the concept of piecewise regression model briefly, 

which we have implemented in our research study for the purpose of detrending the crop yield. 

Piecewise Regression 

Crop production and subsequently the crop yield processes are influenced by a number of 

factors, including spatial and temporal variability in crop growth. Variations in crop production 

have been attributed to fluctuations occurring by several external factors, including weather 

(Hansen & Indeje, 2004; Jones et.al, 2000), the soil condition (Serraj & Sinclair, 2002; Lecoeur 

& Sinclair, 1996), and the management practices (Moran, et al., 1997; Lobell & Asner, 2003). As 

a result, crop yield can exhibit exceptionally high variability, often up to an order of magnitude 

or greater in a given year. However, when yields are smoothed for a shorter time period, then 

they are relatively predictable patterns that appear in many situations. In many cases crop yield 

variations over time can be modeled as linear trend, quadratic trend, or polynomial trend that 

have been explored by researchers (see, Just & Weninger, 1999). Piecewise regression model 

have been found to be useful (see, Skees et al., 1997) when critical threshold is present in yield 

pattern. 

When analyzing a relationship of crop yield over time, t, it may be apparent that for 

different ranges of t, different linear relationships occur for the yield. In addition to technological 

changes, these could also be due to government policy change to improve agricultural 

productivity. In these cases, a single linear function may not provide an adequate specification of 

the function. Piecewise linear regression may be a better representative function that allows 

multiple linear (or nonlinear) models to be fit to the data for different ranges of time. Breakpoints 

are the values of t (time) where the slope of the linear function changes (see, graph below). The 

value of the breakpoint may or may not be known in advance. In this study, breakpoint t (year A) 

is assumed to be known, although they are not same for all districts. 

In other words, relationships that has different direction or magnitude of slopes at 

different time segments in the response variable with time, can be modeled using piecewise 

linear segments of models combined together that has different slopes for different time 

segments. Let us assume the scenario below (see graph): 
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The combined piecewise model can be expressed as: 

 

ttttt TATTY   212110 )(        …. (1) 

 

Where, T1t = time trend (years: 1, 2, …, t), and   

 

     
               
               

  

 

(see, Mendenhall & Sincich, 1996; McGee & Carleton, 1970). 

 

Therefore, when year is less than or equal to “A” the equation (1) becomes: 

ttt TY   110 , which is the first segment (or piece). 

 

The second segment is obtained when year is greater than “A” and the equation (1) becomes: 

    ttt TAY   12120 . 

Consequently, we expect 1 to be negative (which is the slope of the first segment) and 

 21   to be positive (which is the slope of the second segment) in the above scenario. 

Therefore, we expect  12    in absolute value. 

 

To observe the relationship between crop yield and rainfall; two separate analyses were 

performed. First, we applied piecewise regression on crop yield using threshold factor 

(breakpoint) to estimate the trend that can be used to detrend the yield. Then, detrended yield 

(crop yield adjusted for trend) is regressed on the predictor rainfall to observe the association of 

crop production behavior. It is expected that increase in rainfall should increase the crop 

production, since higher amount of water will be capitalized into a higher amount of crop 

production. In addition to the linear rainfall factor (rainfall amount in a month), we have also 

explored quadratic rainfall factor to observe the effect of more rainfall amount on the crop yield. 

Even though, increase in rainfall amount should increase the crop production, and thus increase 

crop yield; however, the effect of additional rainfall amount diminishes as they reach a certain 

saturation point. Therefore, these relationships between crop yield and rainfall amount do not 

appear to be linear and therefore may be better captured by introducing a quadratic term in the 

model. Thus, we introduce a quadratic equation to understand the associative behavior of crop 

yield with rainfall. To test these hypotheses, two separate regression models were estimated in 

this research study.  

 

Specification of the final regression model is of the following form (Month of rainfall 

may be different depending on the district): 

 

MonthsqRainMonthRainYieldDetrended _210     ........... (2) 
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Where: 

Detrended Yield: Amount of yield per hectare (three year moving average) that is detrended 

using the results from piecewise regression. 

Rain Month: Amount of rainfall in a specific month, e.g., March or some other month(s) (using 

three year moving average of rainfall) depends on the district. 

Rain_sq Month: Amount of rainfall square in a specific month (using three year moving average 

of rainfall). 

 

Thus, two sets of regression models were run in two steps using SAS software (see, 

SAS/STAT User's Guide, 1993) on relevant factors to understand the associative nature of 

rainfall and yield. These analyses after controlling for external factors effect are to observe the 

differential effect of the crop yield due to rainfall occurrence at specific time (month) of the year 

due to different districts (or regions). Therefore, this research structure is designed to test the 

hypothesis that crop yield fluctuation is rainfall, time of the year, and location dependent. 
 

Note: The regression residuals model is identified as,   ttBB   2

211  and the estimated first and 

second order autoregressive (AR) parameters from SAS are,   ttBB   27892.08199.01 . 

                
***)01.4(               

***)86.3( . 

Autoregressive parameter’s t-statistics are reported in the parentheses.  They are both significant at the one (***) 

percent level of significance. 

 

EMPIRICAL RESULTS 

 

There is a visible similarities in crop yield trend pattern over time among the districts 

(see, Graph-1), they exhibit some downward trend pattern in the beginning periods and then 

followed by upward trend pattern for the other years (except for Bole). This suggests that due to 

some unobservable phenomena crop yield may differ in different time periods and continues a 

downtrend or uptrend up to a certain threshold point before reversing. In addition, there are slight 

differences in declining trend segment’s breakpoint at a different year for different districts. 

Therefore, it appears that there are two opposite directional trends in crop yields are in play 

which creates the crop yield trend-cycle that split up at a breakpoint around the year 2002/2003. 

TABLE 1: Regression results of Detrended Yield for Bole. 

(Corrected for autocorrelation – using Maximum Likelihood Estimates) 

Variables DF 

Parameter 

Estimates 

Standard 

Error t Value Pr > |t| 

Intercept 1 -0.2243 0.0728 -3.08 0.0131 

March Rain  1 0.006444 0.001880 3.43 0.0075 

R-Square 0.5664     
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It is possible that this may be due to a weather cycle and/or management practice change or some 

other unobservable source of similar nature and this effect may also be location (geographic) 

specific.  Therefore, we have analyzed our data for each district separately to isolate the location 

specific outcome. Thus, the idea of this study is to understand and observe explicit relationship 

between crop yield (detrended) and weather factor “rainfall” (water need), such that, the 

association effect of unobserved external factors on crop yield is eliminated through piecewise 

regression modeling process. The following results address the finding of our research study on 

the detrended crop yields’ relationship with rainfall in different districts.  
 

 

Piecewise regression models that are used in step one to estimate the trend-cycle 

component fit well with higher coefficient of determinations except for the Bole district 

(regression results’ tables are not reported). Among all the districts “Damango” has the best 

fitted piecewise regression model with the highest R
2
=0.9630 followed by R

2 
of 0.9215, 0.8978, 

0.8863, and 0.0999 for districts “Tamale”, “Yendi”, “Salaga, and “Bole” respectively. These 

piecewise regression models largely explain the variations due to unknown trend-cycle effect on 

the yield for most of the districts. Thus, our research results show that piecewise regression 

model provides better estimate for trend pattern in crop yield at a district level in this geographic 

region compared to other simple linear models and was an important tool to detrend the yield. 

TABLE 2: Regression results of Detrended Yield for Tamale. 

 

Variables DF 

Parameter 

Estimates 

Standard 

Error t Value Pr > |t| 

Intercept 1 -0.74233 0.26761 -2.77 0.0197 

July Rain  1 0.00850 0.00341 2.49 0.0318 

July Rain_sq 1 -0.00002257 0.00001014 -2.22 0.0503 

R-Square 0.6062     

TABLE 3: Regression results of Detrended Yield for Yendi. 

(After corrected for autocorrelation – using Maximum Likelihood Estimates) 

Variables DF 

Parameter 

Estimates 

Standard 

Error t Value Pr > |t| 

Intercept 1 -0.0105 0.0296 -0.35 0.7312 

March Rain  1 0.0101 0.003101 3.25 0.0100 

March Rain_sq 1 -0.000331 0.0000674 -4.90 0.0008 

R-Square 0.8893     
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Note: The regression residuals model is identified as,   ttB   11  and the estimated first and second 

order autoregressive (AR) parameters from SAS are,   ttB   6436.01 . 

               
**)52.2(        . 

Autoregressive parameter’s t-statistics are reported in the parentheses.  It is significant at the five (**) percent level 

of significance. 

 

Multiple regression results of detrended yield on rainfall are reported in Tables1-Table5. 

All these models appeared to fit well in determining the relationship between the crop yield and 

rainfall. The best fitted model appears to be in “Yendi” with the highest coefficient of 

determination (R
2
) 0.8893 after corrected for autocorrelation, which is identified as first order 

autoregressive error model (see, Table 3).  These results indicate that March rainfall in general 

impact the crop yield positively. However, to control for diminishing effect of rainfall on the 

crop yield we have included the quadratic term in the regression model and the results show that 

our hypothesis of lesser effect of additional rainfall is established. However, timing of rainfall 

does not seem to affect crop yield equally among the districts. As for example, April rainfall 

seem to be a better predictor for “Salaga” (see, Table 4) with a moderate coefficient of 

determination (R
2
) 0.3357.  On the other hand, better condition for crop yield improvement by 

rainfall is July for “Tamale” and “Damango” (see, Tables 2 and 5). Thus, our analysis reveals 

that there are differences in rainfall effect on the crop yield that are geographic location 

(districts) dependent.  
 

 

 

TABLE 4: Regression results of Detrended Yield for Salaga. 

Variables DF 

Parameter 

Estimates 

Standard 

Error t Value Pr > |t| 

Intercept 1 -0.17021 0.07425 -2.29 0.0426 

April Rain  1 0.00146 0.000619 2.36 0.0380 

R-Square 0.3357     

TABLE 5: Regression results of Detrended Yield for Damango. 

Variables DF 

Parameter 

Estimates 

Standard 

Error t Value Pr > |t| 

Intercept 1 -1.72795 0.53754 -3.21 0.0093 

July Rain  1 0.03087 0.00955 3.23 0.0090 

July Rain_sq 1 -0.00013301 0.00004118 -3.23 0.0090 

R-Square 0.5113     
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CONCLUSION 

 

 We made significant contribution in understanding and implementation of detrending 

process of crop yield pattern in this literature. This research provides additional evidence of 

differential effect of rainfall on crop yield with respect to timing of rainfall and location of crop 

harvest (districts).  It is apparent in this study that in addition to plant characteristics external 

factors such as, timing of measurable rainfall also affect crop yield. Specifically, we observe that 

a crop yield trend-cycle does exist in most of our data sets, which starts with the downtrend that 

ended around 2002/2003 and then reverse to an uptrend for next several years that creates a crop 

yield trend-cycle. This suggests that crop yield trend pattern is likely to be a cyclical pattern 

rather than a linear trend for this region. A possible explanation for this time dependent trend 

cycle of crop yield may be attributed to change in the weather pattern and/or change in 

management practices.  

Consequently, these results add another dimension in this field of research concerning the 

effect of unknown factor(s) on the crop yield that has threshold effect. In addition, identification 

of proper trend pattern, such as, cyclical trend (uptrend and downtrend combined) rather than a 

simple linear trend for detrending the crop yield appears to be significant in this research. For a 

successful operation of weather based index insurance policy to work, the crops grown in 

different locations (districts) need to be properly detrended. Additional research study will be 

helpful, particularly with regard to the linkage between these factors and crop yield dynamics. To 

determine the length of downtrend or uptrend to understand the cause of trend cycle of crop 

yield, future research could examine some phenomena, such as, weather pattern change over 

different time periods. However, the power of piecewise regression model that was applied in 

this paper to eliminate the presence of crop yield trend-cycle does not depend on identifying the 

relevant factor(s).  
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