
RESEARCH ARTICLE e-ISSN: 2249-622X 

 

 

*Corresponding author: A. Naghilou | Telephone: 0098-21-33240083| Mobile: 0098-9334761190 | 
Email: ahad.naghilou@gmail.com 

P
ag

e8
 

P
ag

e8
 

Evaluation of ELF Electric Fields Effects on Bifurcation Phenomenon of Spaced-Clamped 
Coductance-Based Minimal Cell Models  

A.Naghilou*1, S.H.Sabzpoushan2 

1Department of Bioelectric, Science and Technology University, Tehran, Iran   
2Department of Bioelectric, Science and Technology University, Tehran, Iran  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
ABSTRACT 
Spaced clamped Conductance-Based minimal cell models, main basis of more 
complex neuronal models, e.g. Hodgkin-Huxley model. In this paper, these 
models have been modified under the influence of ELF electric fields and 
induced depolarization as a result of such fields is added to the their Nernst 
potential. By using bifurcation analysis of dynamical systems and considering 
the injected current and induced voltage as generic parameters of models, 
the occurrence of dynamical behaviors is justified. Results of this research 
shows that due to the existence of only an amplifying gating variable and one 
resonant gating variable in structure of models, bistability phenomenon is 
caused by Hopf, limit point and LPC (Limit Point Cycle) bifurcations occur and 
multi-stabilities of higher order than two do not occur. Our simulation results 
show that the minimal models, INa,p+Ih and Ih+IKir, have maximum and 
minimum dynamical variations, respectively.    
Keywords: induced voltage component, Hopf bifurcation, Saddle-node, limit 
cycle, equilibrium points. 
 
 

1. INTRODUCTION 
Due to the importance of neuronal electrical activities, 
Hodgkin and Huxley (HH) published a series of their basic 
papers in 1952 and represented a mathematical model 
that still serve as a landmark for neuroscience and 
membrane excitability nowadays [1]. After Hodgkin and 
Huxley, various types of ionic channels have been 
discovered and their open-close characteristics have been 
identified for diverse neuronal membranes. Their 
electrical excitations have been modeled under the HH 
formalism [2]. The space-clamped Hodgkin and Huxley 
equations for the nerve impulse are a system of four 
nonlinear ordinary differential equations that relate the 
difference of electric potential across the cell membrane 
to the membrane's permeability to Na+ and K+ ions as a 
response to an externally applied current stimulus [3]. 
The dynamics of even one single neuron can be quite 
complicated. There is always interested in developing 
techniques to study networks consisting of possibly a large 
number of coupled neurons. If each single neuron 
represents complex dynamical behaviors, clearly the 

analysis of a network of neurons may be extremely 
challenging. For this reason, often it is considering simpler, 
minimal models for single neurons. The insights we can 
gain from analyzing the minimal models are often more 
useful in studying the behavior of more complex cell 
models [4]. 
Eugene M. Izhikevich suggested that any space-clamped 
conductance-based model of a neuron either is a minimal 
model or could be reduced to a minimal space-clamped 
conductance-based model or models by removing gating 
variables [5]. A minimal or irreducible model of 
electrophysiological mechanisms in neurons for spiking 
must satisfy the following two properties:   

1) It has a limit cycle attractor, at least for some 
values of parameters. 

2) If one removes any current or gating variable, the 
model has only equilibrium attractors for any 
values of parameters. 

In the structure of a minimal model, a fast positive 
feedback with a slower negative feedback is used. Gating 
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variables may be amplifying (positive feedback) or 
resonant (negative feedback) depending on whether they 
represent activation/inactivation of inward/outward 
currents. Two amplifying and two resonant gating 
variables produce six different combinations. Actually, if 
an amplifying gating variable has a slow time constant; it 
would act more as a low-pass filter in order to do not 
affect fast oscillations and amplifying only slow 
oscillations. If a resonant gating variable has a fast time 
constant, it will act to damp input oscillations and 
resulting in stability of the equilibrium state. Instead, the 
resonant variable acts as a band-pass filter; it has no effect 
on oscillations with a period much smaller than its time 
constant; it damps oscillations having a period much larger 
than its time constant, because the variable oscillates in 
phase with the voltage oscillations; it amplifies oscillations 
with a period that is about the same as its time constant 
because the variable lags the voltage oscillations [5].    
So far, the original HH equations and various kinds of HH-
type equations have been analyzed numerically and/or 
analytically [6]. On the other hand, an exposure of a cell to 
an external electric field results in the induced 
transmembrane voltage that superimposes to the resting 

voltage. This can have a range of effects, from 
modification of the activity of voltage-gated channels to 
membrane electrporation [7]. Unlike the resting 
transmembrane voltage, which is always present and 
constant everywhere on the plasma membrane, induced 
voltage component only lasts for the duration of the 
exposure and varies with the position on the membrane. 
Consequently, it is often important to accurately 
determine how electric fields affect the dynamics of 
neural activity cell models. 
The main purpose of the present article is to illustrate how 
the extremely low frequency (ELF) electric fields affect the 
dynamics of neural activity in context of minimal space-
clamped conductance-based cell equations. The 
generation mechanism underlying a variety of APs in 
modified minimal cell equations is explored. In fact, we 
are going to understand that could the ELF electrical fields 
in minimal models create multi-stability more than order 
two similar to the Hodgkin-Huxley model?  
2. Methods 
2.1 Spaced Clamped Conductance-Based Minimal       
Neurons Models 
According to Fig1, two amplifying and two resonant gating 
variables produce six different minimal models. 
2.1-1 INa,p+IK model 
Differential equations of the model that consists of a fast 
Na+ current and a relatively slower K+ current are as 
follows: 

 

 
Fig 1. Any combination of one amplifying variable and one resonant 

gating variable result in a spiking model [5]. 

 

2.1.2 INa,t model 
This model consists of Ohmic leak current and a transient 
voltage-gated inward Na+ current as follows: 

 
2.1.3 INa,P+Ih model 
It consists of one amplifying (INa,p) and one resonant (Ih) 
current as follows: 

 
2.1.4 Ih+IKir model 
The Ih+IKir neuron model for describing a variety of         
sustained sub-threshold oscillatory voltage patterns is      
described by: 

 
 

2.1.5 IK+IKir model 
The IK+IKir comprise the following differential equations: 

 
 
2.1-6 IA model 
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The last minimal voltage-gated model has only one      
transient K+current, often referred to as the A-current IA, 
yet it can also generate sustained oscillatory voltage      
patterns. The IA model (pronounced transient potassium 
model or A-current model) has the form  

 
In equations (1) to (18), v represents the membrane        
potential. C is the membrane capacity. While  

and  are the gating variables that represents 

activation of the ionic channels. Where  and 

 are the gating variables that represents 

inactivation of the ionic   currents. Iext is the externally 
applied DC current that is assumed to be temporally 
constant as a generic parameter and t denotes the time 
measured in milliseconds. gA, gNa, gK, gKir, gh and gL denotes 
the maximum conductance of corresponding ionic              
currents. ENa, EK, Eh, and EL represent Nernst potentials of 
Na+, K+, h-current, and leakage currents, respectively. Also 
the steady state activation or inactivation  is a     

voltage-dependent Boltzmann function as follows:  

 
Where v1/2 is the activation or inactivation midpoint      
potential. K denotes the slope factor of the activation or 
inactivation. Voltage sensitive time constant  is      

described by the below Gaussian function 

 
  (20) 

The graph of the function is above Cbase with amplitude 
Camp. The maximal value is achieved at vmax. The parameter 

 measures characteristic width of the graph, i.e. 

 
.  

2.2 The modified minimal neuron models exposed to ELF 
electric field 

In exposures of cells to a homogeneous ELF electric field, 
neuron models is modified[8].The new parameter vE, 
reflecting the effect of the ELF electric field, as an 
electromotive force is added to the membrane[8].induced 
transmembrane potential vE can be calculated as given 
in[9]. Because, time constant of induced voltage in real 
biological cells is of the order of 10-7 and is very small 
compared with the pulse width of ELF electric fields [9] , it 
can be considered time independent. Therefore vE does 
not change the basic structure of minimal models but 
simultaneously change the Nernst potentials of sodium 
current, potassium current, A current, h current, and leak 

current. Thus the original INa,p+IK minimal model is 
modified as the following form: 

 
Other models are modified in the same way. In this paper, 
we treat Iext and vE as main control parameters, and 
analyze one-parameter bifurcations and two-parameter 
bifurcations in the parameter plane of (Iext-vE). The 
parameter values in Equations of models except for Iext 
and vE are listed in tables 1, 2 [5].  
 
 

Model Current Maximal Conductance Nernst Potential 

INa,p+Ih 

INa,p 0.9mS/cm
2
 20mV 

Ih 3mS/cm2 -43mV 

IL 1.3mS/cm2 -80mV 

INa,p+IK 

INa,p 20mS/cm2 60mV 

IK 10mS/cm2 -90mV 

IL 8mS/cm2 -80mV 

Ih+IKir 

Ih 0.5mS/cm2 -43mV 

IKir 4mS/cm
2
 -80mV 

IL 0.44mS/cm2 -50mV 

IK+IKir 
IK 2mS/cm2 -80mV 

IKir 20mS/cm2 -80mV 

INa,t 
INa 15mS/cm

2
 60mV 

IL 1mS/cm
2
 -70mV 

IA 
IA 5mS/cm2 -80mV 

IL 0.2mS/cm2 -60mV 

Table 1: Fixed main parameters for the minimal models [5]. 

 
3. Bifurcations dictionary and their numerical detection     
As parameters of a dynamical system are varied             
qualitative changes in the phase portrait may occur at 
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special values of the parameters. These changes are called     
bifurcations [3]. 
 

Model 
Gating 

variable 
V1/2 K vmax  Camp Cbase 

INa,p+Ih 
m -54 9 - - - 0.8 

h -75 -5.5 -75 15 1000 100 

INa,p+IK 
m -20 15 - - - 0 

n -25 5 - - - 1 

Ih+IKir 
hKir -76 -11 - - - 0 
h -65 -5.5 -75 15 1000 100 

IK+IKir 
hKir -80 -12 - - - 0 

n -55 5 - - - 5 

INa,t 
m -40 15 -38 30 0.46 0.04 

h -62 -7 -67 20 7.4 1.2 

IA 
m -3 20 -71 60 0.92 0.34 

h -66 -10 -73 23 50 8 
Table 2: Fixed gating parameters for the minimal models [5]. 

We calculate two-parameter bifurcation diagrams (2BDs) 
by changing Iext (uA/cm2) as the abscissa and vE (mV) as 
the ordinate. The parameter planes are   divided into 
regions by bifurcation curves consisting of bifurcation 
points. The co-dimension of a bifurcation is the minimum 
dimension of the parameter space in which the bifurcation 
may occur in a persistent way [2]. In 2BDs, bifurcations of 
co-dimension one appear as curves, and co-dimension two 
as points. The following are the types of bifurcations we 
consider in this study [2-6].     
3-1-Co-dimension 1 bifurcations  
Limit point (LP) or saddle node (sn): 
 By changing the parameter value, a pair of equilibrium 
points are created and or annihilated. At this bifurcation 
point, the Jacobian matrix of the system equations at the 
equilibrium point has a zero eigenvalue. The coefficient of 
the fold normal form is nonzero. 
Neutral saddle (NS): 
 Neutral saddle equilibrium occurs when two real 
eigenvalues have opposite signs. Orbits diverge from the 
equilibrium along the eigenvector corresponding to the 
positive eigenvalue. 
Hopf bifurcation: 
Hopf bifurcations occur when the complex conjugate 
eigenvalues simultaneously cross the imaginary axis into 
the right half plane.  By changing the value of a parameter, 
a periodic orbit appears. When the bifurcated orbit is 
stable, it is the supercritical Hopf (H+) bifurcation and the 
first Lyapunov coefficient is negative. Inversely, when the 
bifurcated orbit is unstable, it is the subcritical Hopf (H-) 
bifurcation and the first Lyapunov coefficient is positive. 
Limit point of cycles (LPC): 
Two oscillatory orbits, one stable and the other unstable 
with finite amplitude coalesce and disappear.  
3-2-Co-dimension 2 bifurcations  

Generalized Hopf (GH) bifurcation: There is degeneracy in 
the way in which periodic orbits collapse onto an 
equilibrium point at a Hopf bifurcation. At this bifurcation 
point, the first Lyapunov coefficient vanishes and the 
second Lyapunov coefficient is nonzero. On a 2BD, GH 
(Bautin) locates on the Hopf curve, and at this point, a LPC 
curve is terminated. 
Cusp bifurcation: Three equilibrium points coalesce into 
one. At the Cusp point there is equilibrium with a    simple 
zero eigenvalue but zero coefficient of the fold normal 
form. 
Bogdanov-Takens (BT) bifurcation: 
At each BT point, an equilibrium point undergoes Hopf 
and limit point bifurcations, simultaneously. The Jacobian 
matrix has double zero eigenvalues and the two 
bifurcations occur in the same subspace. On a 2BD, BT 
locates on the LP (sn) curve, and Hopf bifurcation curve is 
tangent to the sn curve at this point.  
3-3-Numerical Detection 
To determine the trajectories and the AP waveforms of 
the models, we used ODE23 in MATLAB and Cellular Open 
Resource (COR) software [10]. We provide the bifurcation    
diagrams of models by means of the software package 
MATCONT [11].  
4-Results  
In this section, we show numerical results obtained by the 
bifurcation analysis and observe a global structure of               
bifurcations in one dimensional (vE) and two dimensional   
(Iext-vE) parametric spaces for the minimal models. We 
illustrate the variations of the single parameter bifurcation 
diagrams for vE with different values of Iext. The injected 
current Iext is considered constant in certain values and 
the bifurcation parameter vE is continuously varied.  
We look at the Hopf and sn curves and LPC points, in 
particular, and identify the parameter regions in which the 
minimal models have the multi-stability of periodic orbits 
and equilibrium points by using 2BDs and single 
parameter bifurcation diagrams. At single parameter 
bifurcation diagrams, the central curve represents the 
equilibrium points and the upper and lower ones shows 
the maximum and minimum values of periodic orbits, 
respectively. The stable and unstable orbits are shown by 
dashed and dotted curves, respectively.  The Fig. 2 gives a 
global view of the bifurcations structure of the INa,P+IK 
model. The Fig.2 (A-E) show the results for Iext =320, 300, 
-100, -200, and -470 uA/cm2, respectively. Also, 2BD of the 
INa,p+IK model in (Iext-vE) plane is shown in Fig.2 (F). In 
each diagram, the parameters, except for parameters of 
the coordinate system, are fixed as values for INa,p+IK 
neuron model as shown in Table1.   
For Iext=320 uA/cm2, as vE increases from small values, 
first a supercritical Hopf bifurcation H+1 occurs. The 
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generated stable limit cycle at H+1, finally, is terminated at 
point H+2. Between these points, steady state of system is 
a stable limit cycle. In the values outside these two points, 
the equilibrium point is the unique stable steady state, 
and the INa,P+IK model behaves as an excitable membrane. 
For Iext=300 uA/cm2, as vE reaches the supercritical Hopf 
bifurcation H+1, the equilibrium point changes from stable 
to unstable. By further increasing vE, a subcritical Hopf 
bifurcation H- occurs. The stable periodic orbit is 
bifurcated from an equilibrium point by the supercritical 
Hopf bifurcation H+ at bifurcation point LPC is combined 
with unstable periodic orbit bifurcated from subcritical 
Hopf bifurcation H- and is disappeared. For Iext=-100 
uA/cm2, as vE start to increase from negative values, a 
supercritical Hopf bifurcation H+1 occur. As vE increases 
further, three branches of equilibrium points show a Z-
shaped curve is joined by LP1 and LP2 bifurcation. Finally, 
the generated stable limit cycle at H+ is terminated at 
point LP1. 

 A)  

B)  

C)  

D)  

E)  

F)  

Fig.2. Single parameter bifurcation diagrams of vE for constant DC       
externally applied current Iext A) 320, B) 300, C) -100, D) -200, and E)               
-470uA/cm

2
. F) 2BD of (Iext-vE) plane. The supercritical Hopf, 

subcritical Hopf, LPC, Neutral saddle, and limit point bifurcation 
points and curves are labeled as H+, H-, LPC, NS, and sn (LP), 
respectively. In F), the points BT, Cusp, and GH represent 
Bogdanov-Takens, Cusp, and generalized Hopf bifurcations, 
respectively. In the single parameter bifurcation diagrams, except for 
B, solid and dotted curves and colored regions show stable point, 
unstable point, and limit cycles, respectively; moreover, in the 
diagram B SP, UP, SC, and UC curves represent stable equilibrium 
point, unstable equilibrium point, and the maximum and minimum of 
stable and unstable periodic orbits, respectively.     

After the point LP2, the system has one stable equilibrium 
point. For Iext=-200 uA/cm2, Hopf bifurcation H+ occurs 
between the points LP1 and LP2. In the region between 
the points LP1 and H+, two of the three equilibrium points 
are stable (Hysteresis or bistability of the equilibrium 
points). In a narrow region between points H+ and LPC as 
shown in the Fig.2 (D), one of the three equilibrium points 
and a periodic orbit are stable (bistability of the 
equilibrium point and the periodic orbit). Note that, this is 
qualitatively different from the previous bistability. For 
Iext=-470 uA/cm2, Hopf bifurcation H- occurs between the 
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points LP1 and LP2. Further, in the region between the 
points LP1 and LPC, two of the three equilibrium points 
are stable. Also, in a very narrow region between LPC and 
H- two stable attractors (two stable equilibrium points) 
and one unstable point coexist with an unstable periodic 
orbit; moreover, the Fig.2 (F) is the 2BD of Iext-vE  plane 
for INa,P+IK model.  
The abscissa and ordinate are Iext and vE, respectively. 
Four types of bifurcation curves are displayed. The solid, 
dotted, and dash-dotted curves represent supercritical 
Hopf, subcritical Hopf and neutral saddle node 
bifurcations. The V-shaped dashed curve is an LP (sn). 
Also, the subcritical Hopf bifurcation curve is terminated 
by the BT point on the lower right branch of the sn curve. 
On the Hopf bifurcation curves H+ and H-, there are two 
GH points. In region I, the periodic orbit is the unique 
stable steady state and an unstable equilibrium point 
exists within it. The asymptotic dynamics of the modified 
model INa,P+IK is the periodic oscillation. In region II and III, 
inside the V-shaped sn curve, the model INa,p+IK has three 
equilibrium points. In II, one of the three equilibrium 
points is stable. However, in III two of the three 
equilibrium points is stable (bistability of the equilibrium 
points). In region II, in the narrow region between the 
curves H+ and LPC (the curve LPC has been not presented 
in the Fig.2 (D)), a few thousandth of millivolt above the 
curve H+, one of the three equilibrium points and a  
periodic orbit are stable (bistability of the equilibrium 
point and the periodic orbit). In region IV, the equilibrium 
point is the unique stable steady state, and the INa,p+IK  
behaves as an excitable membrane. Generally, there are 
two subtypes of excitability in IV. In one type, the 
membrane potential returns to its steady state directly 
after an excitation. In the other subtype, it shows damping 
oscillations after an excitation.  
As regards, the single parameter bifurcation diagrams for 
INa,p+IK model are similar to the single parameter 
bifurcations of other models, only, the general two 
parameter bifurcation diagrams will be represented at 
(Iext-vE) plane in the next models.     
3.2. INa,t model     
Fig.3 shows a bifurcation diagram of equilibrium points 
and limit cycles for INa,t model in the (Iext-vE) plane. In I, 
the equilibrium point is the unique stable steady state and 
the INa,t behaves as an excitable membrane. In II, the 
periodic orbit is the unique stable steady state and an 
unstable equilibrium point exists within it. Also, In III and 

IV, the INa,t has three equilibrium points. In III, one of the 
them is stable. However, In IV three unstable equilibrium 
points coexist with one stable periodic orbit.  
The LPC curve, is originated from the GH point, is located a 
few thousandth of millivolt above the curve H-. Therefore, 

in the narrow region between the curves H- and LPC in 
region I, two limit cycles (one of them stable and another 
unstable) and stable equilibrium point coexist. While in 
the very narrow region between the curves H- and LPC in 
region III, there are two periodic orbits (one of them is 
stable and another is unstable) and three equilibrium 
points (only, one equilibrium point is stable). Therefore, in 
this region, bistability of the equilibrium point and one 
periodic orbit occur. 

 
Fig.3. 2BD of (Iext-vE) plane for INa,t model. The supercritical Hopf,          

subcritical Hopf and limit point bifurcation curves are labeled as H
+
, H

-

and sn (LP), respectively. The points Cusp and GH represent Cusp, 
and generalized Hopf bifurcations, respectively. 

3.3. INa,p+Ih model  
Fig.4 (A) shows the bifurcation diagram of the modified 
INa,p+Ih model for positive injected DC currents. In region I, 
inside the V-shaped sn curve, there are three equilibrium 
point. Two of the them are stable (bistability of the 
equilibrium points). In II, outside the V-shaped sn, the 
equilibrium point is the unique stable steady state, and 
the INa,p+Ih behave as an excitable membrane. Generally, 
there are two subtypes of excitability in I. In one type, the 
membrane potential returns to its steady state directly 
after an excitation. In another, it will respond as damping 
oscillations after an excitation. 
 In Fig.4 (B), the 2BD of modified INa,p+Ih model for negative 
injected DC currents is indicated. In region III, the periodic 
orbit is the unique stable steady state and an unstable 
equilibrium point exist within it. The asymptotic dynamics 
of the INa,p+Ih model is the periodic oscillation. In IV, there 
are three equilibrium points. One of the three equilibrium 
points is stable. In V, three unstable equilibrium points 
coexist with one stable periodic orbit. In the narrow 
regions between the curves H- and LPC (the curve LPC has 
been not presented in the Fig.4 (B)), a few thousandth of 
millivolt above the curve H- in II and a few thousandth of 
millivolt under the curve H- in IV, two periodic orbit (one 
of the them stable and another unstable) coexist with one 
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stable equilibrium point (bistability of the equilibrium 
point and the periodic orbit).  

 

 
Fig.4. 2BDs of (Iext-vE) plane for INa,p+Ih model, A) positive injected DC 
currents, B) negative injected DC currents. The supercritical Hopf,          
subcritical Hopf and limit point bifurcation curves are labeled as H+, H-

and sn (LP), respectively. The points Cusp and GH represent Cusp, and 
generalized Hopf bifurcations, respectively. 

 
 
3.4. Ih+IKir model  
Fig.5 shows the loci in the plane of two parameters Iext 
and vE, where a specific bifurcation occurs. In Figures 5(A) 
and 5(B), curves Hopf and LP (sn) are shown separately. In 
region I, there are three equilibrium points. Two of the 
three equilibrium points are stable (bistability of the        
equilibrium points). In II, the equilibrium point is the 
unique stable steady state. In Fig.5(C) it is difficult to        
distinguish curves Hopf (supercritical and subcritical) and 
sn and apparently there no stable periodic orbits.         
However, there is a very narrow region bounded between 
them where stable periodic orbits exist, although it is    
invisible at this scale.  

 

 
Fig.5. 2BDs of (Iext-vE) plane for Ih+IKir model, A and B shows Hopf and 
sn curves separately. The supercritical Hopf, subcritical Hopf, neutral 
saddle and limit point bifurcation curves are labeled as H+, H-, NS and 
sn (LP), respectively. The points Cusp, BT and GH represent Cusp, 
Bagdanov Takens and generalized Hopf bifurcations, respectively.   

 
3.5. IK+IKir model  
Fig.6 shows the bifurcation diagram of the modified IK+IKir 

model. In I, the equilibrium point is the unique stable 
steady stat, and IK+IKir behave as an excitable membrane. 
However, similar to previous models, there are two 
subtypes of excitability in I. In II, the IK+IKir have three   
equilibrium points. Two of the them are stable (bistability 
of the equilibrium points). In III, the periodic orbit is the 
unique stable steady stat. In the phase portrait of the 
system, an unstable equilibrium point is located inside the 
periodic orbit. In region IV, the IK+IKir have three 
equilibrium points. However, two of the three equilibrium 
points are unstable. In V (Fig. 6(B)), the IK+IKir have five   
equilibrium points. Two of the five equilibrium points are 
stable (bistability of the equilibrium points). In region I, in 
the narrow region between the curves H- and LPC (the 
curve LPC has been not presented in the Fig.6 for the sake 
of clarity), a few thousandth of millivolt above the curve H-

, one stable equilibrium point coexist with two periodic 
orbits(one stable and another unstable). Therefore, 
bistability of the equilibrium point and the periodic orbit 
occurs.   



 A.Naghilou et al.: Asian Journal of Biomedical and Pharmaceutical Sciences; 3(20) 2013, 8-16. 

 

© Asian Journal of Biomedical and Pharmaceutical Sciences, all rights reserved.                Volume 3, Issue 20, 2013 

P
ag

e1
5

 
  P

ag
e1

5
 

 

 
Fig.6. 2BDs of (Iext-vE) plane for IK+IKir model, The supercritical Hopf, 
subcritical Hopf, neutral saddle and limit point bifurcation curves are 
labeled as H+, H-, NS and sn (LP), respectively. The points Cusp, BT 

and GH represent Cusp, Bagdanov Takens and generalized Hopf              
bifurcations, respectively.     

3-6 IA model  
Fig.7 shows a bifurcation diagram of equilibrium points 
and limit cycles for IA model in the (Iext-vE) plane. In 
region I, there are three equilibrium points. Two of the 
three equilibrium points are stable (bistability of the 
equilibrium points). In II, the equilibrium point is the 
unique stable steady state and the IA behaves as an 
excitable membrane. In III, the periodic orbit is the 
unique stable steady stat. In the phase portrait of the 
system, an unstable equilibrium point is located inside the 
periodic orbit. In IV, inside the V-shaped sn curve, there 
are three equilibrium point. Two of the them are unstable. 
In region II, in the narrow region between the curves H- 
and LPC (the curve LPC has not been presented in the Fig.7 
for the sake of clarity), a few thousandth of millivolt above 
or under the curve H-, one stable equilibrium point coexist 
with two periodic orbits (one stable and another 
unstable). Thus, bistability of the equilibrium point and 
the periodic orbit occurs.      

 

 
Fig.7. 2BDs of (Iext-vE) plane for IA model, A) positive injected DC 
currents, B) negative injected DC currents. The supercritical Hopf,          
subcritical Hopf, neutral saddle and limit point bifurcation curves are 
labeled as H+, H-, NS and sn (LP), respectively. The points Cusp, BT 

and GH represent Cusp, Bagdanov Takens and generalized Hopf              
bifurcations, respectively.  

In all models, the regions, in which limit cycles (one is 
stable and another is unstable) and a stable equilibrium 
point coexist, are located at a few thousandth of a 
millivolt of the Hopf bifurcation curve. These regions are 
hardly detectable and not shown in 2BDs. According to the 
2BDs, unlike Hodgkin-Huxley model that is affected by ELF 
electric fields [8], the minimal models, are always 
monostable or bistable when are affected by the 
mentioned fields. Also, the minimal models, INa,p+Ih and 
Ih+IKir , have maximum and minimum dynamic variations, 
respectively. Note that, the INa,p+Ih and Ih+IKir have 7 and 3 
different dynamical regions , respectively.  

4. DISCUSSION  
We have investigated bifurcations observed in the         
minimal cell models. Results are summarized in various 
two parameter bifurcation diagrams with Iext (externally      

applied DC current) as the abscissa and induced voltage 
component as the ordinate. In each diagram, the              

parameter plane was divided into several regions 
according to the qualitative behavior of the models. 
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Global analysis of the bifurcation structure suggested that 
generation of these regions is associated with GH and LPC 
bifurcations. Also, results of this study shows that due to 

existence of only an amplifying gating variable and one 
resonant gating variable in structure of minimal models, 
multi-stabilities of higher order than two do not occur.  
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