MODEL FOR FORMING OF OPTIMAL CREDIT PORTFOLIO OF COMMERCIAL BANK

Svetlana Drobyazko, Open University of Human Development
Olha Bondarevska, Poltava National Technical Y. Kondratyuk University
Dmytri Klymenko, University of the State Fiscal Service of Ukraine
Svetlana Pletenetska, KROK University of Economy and Law
Olha Pylypenko, V.I. Vernadsky Taurida University

ABSTRACT

A methodological approach to the optimization of a commercial bank's credit portfolio is proposed based on Markowitz economic and mathematical optimization model. The economic and mathematical model has been formed, relating to optimization of the bank's credit portfolio based on balancing the factors of maximum profitability and given level of credit risk. A methodical approach was formed to form a credit portfolio by types of credit services and the level of profitability of each of them in the total amount of credits granted.

Keywords: Markowitz model, Credit portfolio, Commercial bank, Covariation

INTRODUCTION

Each commercial bank has as its main goal an increase in profit margins while simultaneously fixing or reducing the cost of raising funds. This is possible by reducing the volume of passive operations, or by rational allocation of borrowed funds in active operations of the bank. Therefore, the main task should be the effective allocation of resources precisely in credit operations. For this, it is necessary not only to qualitatively analyze the credit portfolio of the bank, but also to form its structure in such a way as to maximize profitability for each type of credit operations (products), including the risk of non-repayment of credit by borrowers.

LITERATURE REVIEW

To analyze the credit portfolio, the following components are used: assessment of the quality of credits constituting the portfolio; determining the structure of the portfolio as a function of credit quality and determining the structure as a function of its dynamics (Casu et al., 2012; Drobyazko S. et al., 2019a, 2019b). As Mishkin and Eakins (2006) note, a bank typically uses several types of credit products: overdrafts, credit lines, term credits, aval credits, interbank credits and the like. The main factor is the value of the portfolio, as the total value of all components of the credits actually granted for a certain time (Rose, 2002).
METHODOLOGY

Let x_i be the share of capital spent to provide the i^{th} loan. All allocated capital is taken as one. Let the d_i profitability in percentage of annual loans of the i^{th} type per one monetary unit. Find the yield of the entire portfolio d_p. On the one hand, in a year the portfolio capital will be equal to $1 + d_p$, on the other hand, the value of loans of the i^{th} type will increase from x to $x_i + d_i x_i$, so that the total value of the portfolio will be $\sum x_i + \sum x_i d_i = 1 + \sum x_i d_i$. Comparing two bonds for the portfolio value, we get:

$$1 + d_p = 1 + \sum x_i d_i; \quad d_p = \sum x_i d_i$$

(1)

Therefore, the task of raising portfolio capital is equivalent to the similar problem of portfolio profitability, expressed in terms of loan yields and their share of the formula (1). Let m_i, σ_i be the average expected return and the mean square deviation of this random return, that is, $Mm_i = M[d_i]$ is mathematical expectation of profitability and $\tau_i = \sqrt{v_{ii}}$, wherein v_{ii} is covariance of the i^{th} profitability. The mathematical expectation of a discrete random variable is called the sum of the product of all its possible values on their probabilities (Fama & French, 2004). Covariance is the degree of association between two data ranges $ov(X, Y) = \frac{1}{n} \times (x_i - u_X) \times (y_i - u_Y)$.

We will call m_i, τ_i, respectively the efficiency and risk of the i^{th} loan. Denote by v_{ij} the covariance of the yields of loans of the i^{th} and j^{th} types (or the correlation moment K_{ij}). Because the yield of the component portfolios of securities is accidental, the yield of the portfolio is also a random variable. There is a mathematical expectation of a portfolio's profitability $M[d_p] = x_1 M[d_1] + \cdots + x_m M[d_m] = \sum x_i m_i$, denote it by m_p. There is a variance in portfolio returns $[d_p] = \sum \sum x_i x_j v_{ij}$. Just as for loans we call m_p- portfolio efficiency, and the value $\delta_p \sqrt{\mathbb{E}[d_p]}$ is the risk of portfolio τ_p. Typically, the variance of portfolio returns is denoted by \mathbb{V}_p. Variance of Discrete Random Value- Mathematical Expectation of a Square Deviation of a Random Value from its Mathematical Expectation: $D(X) = M[X - M(X)]^2$.

Each bank is faced with a dilemma: one wants to have the effectiveness of the credit portfolio more and the risk less. The model of the optimal Markowitz portfolio, which ensures minimal risk and a given profitability, has the form:

$$\begin{cases}
 v = \sum_i \sum_j x_i x_j v_{ij} \rightarrow \min & \text{m and n}
 \\
 \sum_i x_i d_i = m_p
 \\
 \sum_i x_i = 1
\end{cases}$$

(2)

Need to determine: x_1, x_2, \ldots, x_n. An optimal portfolio of Markowitz (1952) maximum profitability and a given (acceptable) risk τ_p can be represented as:

$$\begin{cases}
 m_p = \sum_i x_i d_i \rightarrow \max
 \\
 \sum_i \sum_j x_i x_j v_{ij} = \tau_p
 \\
 \sum_i x_i = 1
\end{cases}$$

(3)

The arithmetic average yield of the i^{th} loan is calculated by the formula:

Covariance or correlation of yield of credit products:

\[
V_{ij} = M \left(\frac{\Delta_i}{d_k-d_i} \cdot \frac{\Delta_j}{d_k-j} \right) \approx \frac{1}{N} \sum_{k=1}^{N} \Delta_{ik} \times \Delta_{jk}
\]

Wherein, \(\Delta_{ik} \), \(\Delta_{jk} \) are deviation of the \(i^{th} \) and \(j^{th} \) yields from the arithmetic average yield.

RESULTS AND DISCUSSION

For comparison, consider the model of optimal formation of Tobin investment portfolio. The Tobin model, like the Markowitz model, aims at determining the optimal portfolio and risk for them (Gomes & Khan, 2011). Tobin portfolio of minimal risk is expressed as follows:

\[
\begin{align*}
\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j v_{ij} & \to \min \\
x_0 m_0 + \sum_{i=1}^{n} x_i m_i & = m_p \\
x_0 + \sum_{i=1}^{n} x_i & = 1
\end{align*}
\]

Where:

\(m_0 \) – effectiveness of risk-free investment;

\(x_0 \) – share of capital invested in risk-free investment;

\(x_i, x_j \) – the share of capital invested in investments of \(i^{th} \) and \(j^{th} \) types;

\(m_i \) – mathematical expectation (arithmetic average) of the \(i^{th} \) investment return;

\(v_{ij} \) – correlation point between the investment performance of \(i^{th} \) and \(j^{th} \) types;

Tobin portfolio of maximum efficiency is expressed as follows:

\[
\begin{align*}
x_0 m_0 + \sum_{i=1}^{n} x_i m_i & \to \max \\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j v_{ij} & = r_p \\
x_0 + \sum_{i=1}^{n} x_i & = 1
\end{align*}
\]

Where, \(r_p \) – portfolio risk.

When choosing a model to calculate the optimal credit portfolio, we use the Markowitz optimization model.

Considering that today commercial banks use rather rigid assessment of credit risks and financial position of borrowers, we can say that the weighted average risk on credit operations is relatively constant. Therefore, the value of credit risk in calculating the Markowitz model is assumed to be equal to a constant value of approximately 5-6% (Dobler, 2005). Let’s consider forming a credit portfolio for a time lag of 27 periods (Table 1).
To determine the average yield of each type of credit, we use formula (4). The average yield on overdrafts is 0.00632, on credit lines- 0.00724, term credits- 0.00175, aval credits- 0.00098, consumer credits- 0.00312. To calculate the covariation, we apply formula (5). The calculation of the covariation of the general sample of the yield of credit transactions is shown in Table 2.

TABLE 1
THE YIELD OF THE CREDIT PORTFOLIO BY TYPES OF CREDIT OPERATIONS

<table>
<thead>
<tr>
<th>Time lag</th>
<th>Overdrafts</th>
<th>Credit lines</th>
<th>Term credits</th>
<th>Aval credits</th>
<th>Consumer credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00518</td>
<td>0.00595</td>
<td>0.00139</td>
<td>0.00061</td>
<td>0.00293</td>
</tr>
<tr>
<td>2</td>
<td>0.00498</td>
<td>0.00623</td>
<td>0.00143</td>
<td>0.00081</td>
<td>0.00269</td>
</tr>
<tr>
<td>3</td>
<td>0.00550</td>
<td>0.00648</td>
<td>0.00170</td>
<td>0.00071</td>
<td>0.00316</td>
</tr>
<tr>
<td>4</td>
<td>0.00580</td>
<td>0.00698</td>
<td>0.00162</td>
<td>0.00091</td>
<td>0.00334</td>
</tr>
<tr>
<td>5</td>
<td>0.00616</td>
<td>0.00704</td>
<td>0.00175</td>
<td>0.00110</td>
<td>0.00342</td>
</tr>
<tr>
<td>6</td>
<td>0.00595</td>
<td>0.00759</td>
<td>0.00180</td>
<td>0.00134</td>
<td>0.00318</td>
</tr>
<tr>
<td>7</td>
<td>0.00584</td>
<td>0.00836</td>
<td>0.00191</td>
<td>0.00130</td>
<td>0.00363</td>
</tr>
<tr>
<td>8</td>
<td>0.00569</td>
<td>0.00811</td>
<td>0.00177</td>
<td>0.00124</td>
<td>0.00329</td>
</tr>
<tr>
<td>9</td>
<td>0.00692</td>
<td>0.00759</td>
<td>0.00171</td>
<td>0.00113</td>
<td>0.00374</td>
</tr>
<tr>
<td>10</td>
<td>0.00537</td>
<td>0.00800</td>
<td>0.00193</td>
<td>0.00105</td>
<td>0.00312</td>
</tr>
<tr>
<td>11</td>
<td>0.00524</td>
<td>0.00723</td>
<td>0.00178</td>
<td>0.00100</td>
<td>0.00284</td>
</tr>
<tr>
<td>12</td>
<td>0.00541</td>
<td>0.00694</td>
<td>0.00166</td>
<td>0.00069</td>
<td>0.00262</td>
</tr>
<tr>
<td>13</td>
<td>0.00555</td>
<td>0.00664</td>
<td>0.00141</td>
<td>0.00072</td>
<td>0.00269</td>
</tr>
<tr>
<td>14</td>
<td>0.00560</td>
<td>0.00689</td>
<td>0.00150</td>
<td>0.00072</td>
<td>0.00281</td>
</tr>
<tr>
<td>15</td>
<td>0.00584</td>
<td>0.00716</td>
<td>0.00151</td>
<td>0.00069</td>
<td>0.00298</td>
</tr>
<tr>
<td>16</td>
<td>0.00595</td>
<td>0.00737</td>
<td>0.00157</td>
<td>0.00081</td>
<td>0.00318</td>
</tr>
<tr>
<td>17</td>
<td>0.00687</td>
<td>0.00735</td>
<td>0.00163</td>
<td>0.00088</td>
<td>0.00326</td>
</tr>
<tr>
<td>18</td>
<td>0.00746</td>
<td>0.00757</td>
<td>0.00172</td>
<td>0.00084</td>
<td>0.00345</td>
</tr>
<tr>
<td>19</td>
<td>0.00735</td>
<td>0.00792</td>
<td>0.00178</td>
<td>0.00126</td>
<td>0.00336</td>
</tr>
<tr>
<td>20</td>
<td>0.00655</td>
<td>0.00748</td>
<td>0.00208</td>
<td>0.00139</td>
<td>0.00329</td>
</tr>
<tr>
<td>21</td>
<td>0.00555</td>
<td>0.00775</td>
<td>0.00228</td>
<td>0.00138</td>
<td>0.00311</td>
</tr>
<tr>
<td>22</td>
<td>0.00594</td>
<td>0.00722</td>
<td>0.00222</td>
<td>0.00130</td>
<td>0.00301</td>
</tr>
<tr>
<td>23</td>
<td>0.00652</td>
<td>0.00703</td>
<td>0.00200</td>
<td>0.00110</td>
<td>0.00275</td>
</tr>
<tr>
<td>24</td>
<td>0.00744</td>
<td>0.00672</td>
<td>0.00187</td>
<td>0.00096</td>
<td>0.00282</td>
</tr>
<tr>
<td>25</td>
<td>0.00791</td>
<td>0.00691</td>
<td>0.00163</td>
<td>0.00079</td>
<td>0.00321</td>
</tr>
<tr>
<td>26</td>
<td>0.00790</td>
<td>0.00735</td>
<td>0.00177</td>
<td>0.00086</td>
<td>0.00319</td>
</tr>
<tr>
<td>27</td>
<td>0.01012</td>
<td>0.00768</td>
<td>0.00187</td>
<td>0.00100</td>
<td>0.00321</td>
</tr>
</tbody>
</table>

TABLE 2
COVARIATION VALUES OF THE GENERAL YIELD SAMPLE, V_ij

<table>
<thead>
<tr>
<th>Bank products</th>
<th>Overdrafts</th>
<th>Credit lines</th>
<th>Term credits</th>
<th>Aval credits</th>
<th>Consumer credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrafts</td>
<td>0.00000012998</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Credit lines</td>
<td>0.0000001676</td>
<td>0.00000003200</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Term credits</td>
<td>0.0000000465</td>
<td>0.0000000706</td>
<td>0.0000000513</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Aval credits</td>
<td>0.0000000248</td>
<td>0.0000000952</td>
<td>0.0000000443</td>
<td>0.0000000584</td>
<td>–</td>
</tr>
<tr>
<td>Consumer credits</td>
<td>0.0000001132</td>
<td>0.0000001005</td>
<td>0.000000146</td>
<td>0.000000314</td>
<td>0.0000000830</td>
</tr>
</tbody>
</table>

Having received the necessary data V_{ij} – covariation, d_i – average yield for each type of credit (Dell’Ariccia, 2001), it is possible to form a target function for calculating the Markowitz optimization model:

$$M_p = \sum x_j \times d_{ia} \rightarrow \infty$$

(8)

Where,

$X_1 = \text{share of overdrafts in the structure of the credit portfolio} ;$

$X_2 = \text{share of credit lines in the structure of the credit portfolio} ;$

$X_3 = \text{share of term credits in the structure of the credit portfolio} ;$

$X_4 = \text{share of aval loans in the structure of the credit portfolio} ;$

$X_5 = \text{share of consumer credits in the structure of the credit portfolio} .$

We construct restrictions on the optimization model.

Restriction 1: $\sum \sum x_i \times x_j \times v_{ij} = r_p,$

Where, r_p – permissible permanent risk equal to $\approx 5\%$

Restriction 2: $\sum x_{ij} = 1$ from the system of portfolio optimization (3).

To solve the Markowitz optimization model, we substitute the value in the cell “target function” M_p, determine the search values: X_1, X_2, X_3, X_4, X_5 and introduce the limitations above. After entering all the necessary data, we calculate the objective function and X_i. The results obtained are shown in Table 3.

<table>
<thead>
<tr>
<th>X_i</th>
<th>Markowitz model</th>
<th>Bank credit portfolio structure</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>73%</td>
<td>55.3%</td>
<td>17.7%</td>
</tr>
<tr>
<td>X_2</td>
<td>20%</td>
<td>35%</td>
<td>15%</td>
</tr>
<tr>
<td>X_3</td>
<td>3%</td>
<td>5.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>X_4</td>
<td>2%</td>
<td>3.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>X_5</td>
<td>2%</td>
<td>1.1%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Thus, the structure of the bank's credit portfolio will be optimal if the distribution of the credit portfolio is in the ratio: 73% should be diverted to overdraft; 20% - in credit lines; 3% in term credits; 2% - in aval credits; 2% - in consumer credits.

CONCLUSIONS

An economic and mathematical model of credit risk decrease is proposed using Markowitz calculation model. The limits set by the bank's policy on credit portions in the credit portfolio are minimal in the model. That is, when cancelling them, the advantage will be completely on the side of overdraft credits. In order to increase the income from credit operations, the bank now needs to divert credit to overdraft credits because their average yield is higher than all other credit operations. The calculation of the credit portfolio
optimization model revealed that the amount of credit risk is too small from the standard rate and is 0.000031%. With this amount of credit risk, the bank is able to credit the most borrowers.

REFERENCES

