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ABSTRACT 

 

The quality and cost of several industrial product's plants are affected by variability and 

disturbances that appear in processes. Oscillatory disturbances are harmful both because they 

affect mechanical components and because their propagation leads to an increase in the 

variance of the plant. Poor performance of the control system plus oscillatory disturbances 

leads to a higher cost of production. This research develops a technique for reducing variability 

in control loops for processes with PID controllers against oscillatory disturbances by re-tuning 

the controller, obtaining better results than traditional tunings while decreasing cost production 

by reduction of process variance. A factorial experiment was designed to obtain tuning 

equations of the controller to attenuate the effect of an oscillatory disturbance to the control 

loop. Two experiments were performed: the proportional controller (P) and the other for the 

Proportional-Integral controller (PI). The response variable is lambda  , which is the 

parameter that is varied in the range                 for each experimental condition. The 

design concept of this control strategy is that when an oscillatory disturbance occurs, instead of 

designing the controller to reach the setpoint, it is re-tuned to act as the best possible filter. Due 

to this, a performance criterion was defined that sought to minimize the effect of an oscillatory 

disturbance. The equations developed in this research are limited to self-regulated processes, 

where proportional (P) or proportional-integral (PI) controllers are implemented. The ranges 

of the process parameters are those specified in this research. This technique is not limited or 

restricted to processes with a single control loop because the modification is done on each 

individual controller. This strategy can be extended to more controllers without additional 

mathematical developments since this self-tuning technique when operating on each controller 

individually, seeks to cancel a disturbance that affects each controller independent of the 

control action of other adjacent controllers. Each controller perceives a behavior and applies 

the technique to know if the source of the disturbance comes from itself or a disturbance, if the 

oscillation is not the cause of itself (the controller) then it is due to a disturbance. An index that 

seeks to minimize the amplitude of this oscillation is proposed. If the oscillation cannot fade, at 

least its impact can be decreased by reducing its amplitude. By reducing the amplitude, the 

output can be kept as close as possible to its average value, which is the setpoint from a control 

engineering perspective. The standard deviation is an ideal statistic for this function since it 

quantifies the amount of variation in a data set. A lower value of the standard deviation would 

indicate that the data tend to be closer to the mean (the setpoint). In contrast, a high value of the 

standard deviation would show that the data are spread over a wider area farther away from 

the setpoint. 
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INTRODUCTION 

 

Despite the significant advantages that the implementation of control loops brings, many 

times the results do not reach their maximum performance, this due to the poor tuning of the 

controller (among other reasons), which can lead to slow response, aggressive or oscillatory of 

the control loop, poor ability to reject disturbances, poor robustness, and even safety problems 

(Cardenas, 2019; Jelali, 2013), Bialkowski pointed out that only 20% of the controllers work 

well and actually decrease the variability of the process. Desborough and Miller (Desborough, 

2002) mention that only a third of the controllers can be classified as acceptable, and the rest 

have an excellent opportunity for improvement. Due to this, controllers are frequently operated 

in manual mode or present a poor or acceptable performance; in fact, about two-thirds of all 

these controllers have an opportunity for improvement (Hugo, 2001; Hugo, 2021; Choudhury, 

2008; Borrero-Salazar, 2019), shown in Figure. 1.  

The most common causes of control performance deterioration are poor controller 

tuning, equipment failures, poor process design, interactions between loops, presence of non-

linearities and oscillations. Of these behaviors, the presence of unwanted oscillations is usually 

more detrimental because it decreases the control system's performance and affects the 

mechanical components in the process. More than 30% of the control loops show an oscillatory 

behavior (Hägglund, 1995; Ding, 2021; Escalante-Hurtado, 2021; Jiménez-Cabas, 2020). These 

oscillations may have a particular origin, but they can spread rapidly from one loop to another 

and from one processing unit to another (Choudhury, 2008; Gómez Múnera, 2021; Zheng, 

2021), such as feedback loops or interactions between control loops. These oscillations have 

been reported to increase process variability, causing lower quality products, high reject rates, 

increased energy consumption, and low average system performance (production capacity). 

 

 
FIGURE 1   

GLOBAL MULTI-INDUSTRY DEMOGRAPHICS OF CONTROL LOOP 

PERFORMANCE 

 

The presence of oscillatory disturbances is detrimental not only because it affects the 

mechanical components of the process but also because the oscillatory effect spreads from one 

loop to another and from one process to another. This increase in variance results in poor 

process performance and variability in product quality, leading to economic and market losses. 

The literature review carried out indicates that both traditional and recently developed tuning 

strategies focus on improving the performance of the control loop under step or stable stimulus 

without considering the performance of the loop under induced and recurrent oscillations 

(Hägglund, 1995; Ding, 2021, Patwardhan, 2008; Wang, 2021; Nowak, 2020).  

Considering that the existence of oscillatory disturbances derived from dynamics 

upstream of the process is regarded as a possible cause of action of the control loop (Choudhury, 
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2008), the present work presents the development of a controller tuning technique with which it 

is sought to reduce variability in the face of oscillatory disturbances. 

 

 

Control Loop System 

 

This research applies to processes that respond with a bounded response when affected 

by a bounded input (also called Self-regulating processes); the system "regulates" itself to a new 

bounded value (Smith, 2005; Jiménez-Cabas, 2020). Most of industrial plants have this type of 

behavior, i.e., thermal-mechanical, and chemical, where variables like pressure, temperature, 

level, etc., are measured and controlled. The most commonly used controller is the PID type 

(Gao, 2016; Wang, 2021). These controllers frequently are not tuned for oscillating input 

disturbances; they regularly are tuned for step-like inputs. The typical control system 

configuration is shown in Figure 2.  

 

 
FIGURE 2 

BLOCK DIAGRAM OF THE COMPONENTS OF A CLOSED-LOOP CONTROL 

SYSTEM 

 

The general structure of a Proportional-Integral-Derivative PID controller is shown in(1). 

The tuning of a controller refers to CK , I  and D , also called tuning values. The tuning values 

selection is chosen in such a way that the desired behavior is obtained in the response of the 

control loop, in other words, that its dynamic characteristic, or "personality," is the desired one; 

This is done by taking into account both the controller and the other elements in the control loop  

(Smith, 2005; Múnera, 2020). These tuning parameters are chosen by optimizing an objective 

function or cost function that assesses the performance of the PID controller under a certain pre-

defined or expected "personality" (Sahib, 2016). 

      
 

D
C

C C

I

de tK
u t u K e t e t dt K

dt



     (1) 

 

Usually, control loops have been tuned under the assumption of a step like input either in 

the setpoint  SETC s  or in the disturbance  D s  and performance criteria based on control error 

have been proposed (Rise Time, Settling Time, Decay Ratio, Overshoot, IAE, etc.) since the 

behavior of the closed-loop transfer function (CLTF) has a nature of a second-order system 

under-damped response. However, oscillating inputs have not been used for tuning controller 

design. Numerical simulation and Frequency Response Techniques are used in this research to 

analyze the above situation. The main variables are input disturbances and outputs from 

processes. The effect of an oscillating disturbance input in the process output controlled variable 

is analyzed. 

 

Performance Criteria 
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The following section analyzes the output of a control system in closed-loop. The reader 

is advised to recall that the closed-loop transfer function (CLTF) behavior has a nature of a 

second-order system under-damped response. For a step type input with magnitude x , 

   x t xu t  , the output takes the form:  

        /

2

1
sin

1

t

C t K x u t e t
 

 



 

    
  

, (2) 

 

where 
21-   is the frequency in rad/s and  -1 2tan 1-   is the phase angle in rad.  

 

Equation (2) shows that a step input causes an oscillatory behavior in the loop by some 

time; however, after some time, say 
st t , the oscillatory part vanishes, as indicated by the term 

 - /
t

e
 

. However, for an oscillatory input, for example, sinusoidal, with an amplitude A  and a 

frequency  ,    sinx t A t , the output has the form: 

      
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1 2

t KA
C t KADe t t
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  


   

 

, (3) 

where   -1 2 2tan 2 1-     is the phase angle in radians.  

The values of the first term are not very relevant since this term fades over time. The 

importance is that after that time, the output becomes an oscillatory output, in this case an 

oscillatory sinusoidal-like, as is shown by the second term  sin t  , with the same frequency 

as the frequency of the input signal. The amplitude and phase angle of the output are functions 

of the input signal frequency.  

Traditionally, several investigations have used indices or performance criteria based on 

loop behavior against step-type input, obtaining performance criteria for the control loop such as 

the rate of decay, the rise time, overshoot, those based on the IAE, (Smith, 2005; Sahib, 2016). 

All these criteria work very well for this type of input (step-type), where the output converges to 

a fixed value over time. The previous does not apply for an oscillatory input since the output 

will have a sustained oscillatory behavior without reaching a fixed value in time because the 

nature of the input is different.  

Due to the above, an index that seeks to minimize the amplitude of this oscillation is 

proposed. If the oscillation cannot fade, at least its impact can be decreased by reducing its 

amplitude. By reducing the amplitude, the output can be kept as close as possible to its average 

value, which is the setpoint from a control engineering perspective. The standard deviation is an 

ideal statistic for this function since it quantifies the amount of variation in a data set. A lower 

value of the standard deviation would indicate that the data tend to be closer to the mean (the 

setpoint). In contrast, a high value of the standard deviation would show that the data are spread 

over a wider area farther away from the setpoint. The general structure of the standard deviation 

of a data sample is: 

 
 

2

1

1

N

ii
x x

N
 







 (4) 

 

On the other hand, the amplitude of the input disturbance, besides being unknown, 

cannot be modified. Therefore, the index intends to minimize the standard deviation of the 

output. The previous is possible by recalling that the controller affects the control loop response 

by being present in the characteristic equation of the loop, as will be seen next. In the event of 
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an oscillatory disturbance, the desired behavior of the controller in the control loop will be that 

of a filter, since although the oscillation cannot fade, it is possible to reduce its impact by 

designing the controller as a filter. In this way, the attenuation index (AI) is defined, which is 

focused on reducing the amplitude of the controlled variable: 

 PV

D

AI



  (5) 

where 
PV  is the standard deviation of the controlled variable (Process Variable, PV) and 

D  is 

the standard deviation of the oscillatory disturbance (disturbance, D). 

The impact obtained with the designed re-tuning strategy can be expressed by the ratio 

of the attenuation index with the proposed tuning versus the attenuation index with the 

traditional tuning as follows 

 re tunned
AI

original

AI

AI
   (6) 

 

It is worth mentioning that this indicator should oscillate between 0 and 1. A zero value 

would be obtained with a tuning that eliminates the oscillation presented (ideal case not 

feasible). A value of one would be obtained by remaining with the original tuning (without 

changing the initial tuning). A better filtering effect of the controller occurs the lower the value 

of AI . A value above one in the calculation of AI  indicates that the tuning used worsens the 

initial situation. 

 

Tuning Equation for an Oscillatory Input 

 

The control system to consider is a Single-Input Single-Output, or commonly called 

SISO system, operating with a feedback controller, as shown in Fig. 3  PG s  is the process 

transfer function,  DG s  is the disturbance transfer function, and  CG s  is the controller 

transfer function. The performance and stability of the control loop is defined by the 

components present in its loop,  PG s ,  DG s  and  CG s .  

  
 

 
1

1
1

D
C C

I D

M s T s
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E s T s T s

 
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 (7) 

 

The transfer function of a PID controller with derivative filtering mode is shown in (7). 

Industrial Processes are usually represented with a FOPDT (First-Order-Plus-Dead-Time) 

transfer function. They can also be modeled using a more complex structure, using differential 

equations proposed in [24]. However, the FOPDT model has been used in this research: 

  
 

0( )

1

t s

P
P

K eC s
G s

M s s



 


 (8) 

The parameters of this model are the process constant PK , the process dead time 0t  and 

the process time constant  . Practice in control engineering applications indicates that 

controller tunings based on this empirical model result in good control loop performance near 

the conditions used for process characterization. The non-linear behavior of the process is 

reflected in changes in some (or all) of these parameters as the real-operating conditions change.  

 

A factorial experiment was designed to obtain tuning equations of the controller to 

attenuate/filter the effect of an oscillatory disturbance to the control loop. Two experiments were 

performed: the proportional controller (P) and the other for the Proportional-Integral controller 
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(PI). The response variable is lambda λ , which is the parameter that is varied in the range 

 0 00.9 ,10t t    for each experimental condition. 

 

 
FIGURE 3  

SISO FEEDBACK CONTROL LOOP 

 

   is the parameter that affects the tuning of the controller, as shown in the following 

equation: 

 
 0 

C

P

K
K t







  (9) 

The optimal lambda   in each experimental condition is the one that leads to the 

minimization of the index defined previously, the attenuation index AI, which is focused on 

reducing the amplitude of the controlled variable. Figure 4 shows the scheme of the dynamic 

model implemented in Simulink
TM

 to carry out the experiment. For the process block, a FOPDT 

was used to model the process, and for the controller block, the equations corresponding to 

controller P and PI were used, as described in the previous section.  

 

 
FIGURE 4  

BLOCK DIAGRAM IMPLEMENTED IN SIMULINK
TM

 FOR THE EXPERIMENT 

 

A three-level factorial experiment of the form 3k
was carried out to observe the linear 

and non-linear correlations between the process parameters and the optimal tuning. This 

experiment includes four factors, and 162 experimental runs were performed for each controller. 

The factors are  , PK ,   and 0t   which are the angular frequency of the oscillatory 

disturbance, the process gain, the process time constant, and relationship between dead time and 

time constant, respectively. It was unnecessary to carry out replications because this experiment 

is a deterministic computational test, and the repetition of the factor levels would bring the same 

results. A fractional design was not carried out to preserve the number of degrees of freedom 

and, therefore, the robustness and reliability of the equations obtained. Table I shows the levels 

selected for each experimental factor. The response variable of the experiment is lambda which, 

as explained previously, is the parameter that provides optimal tuning. The levels of each 

experimental factor were selected by taking a broader range of dynamic process parameters than 

other sets of tuning equations (Beltrán, 2018).  

 

TABLE 1   
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LEVELS OF EXPERIMENTAL FACTORS OF THE DYNAMIC PARAMETERS 

OF THE PROCESS FOR THE EXPERIMENT OF OPTIMAL TUNING 

 
FACTORS 

 
A B C D 

LEVELS ɷ KP τ t0/τ 

Low 0.1 0.5 1 0.2 

medium 0.5 1.5 3 0.6 

high 1 2.5 5 1 

 

Tuning Equation for Proportional controller (P) 

 

Table 2 presents the ANOVA of the experiment carried out for the proportional 

controller. Here it can be seen that the factor t0/τ does not significantly affect the response 

variable lambda, while the factors ɷ, KP, and τ do. The previous is verified by performing a 

correlation analysis between the factors and the response variable, shown in Table 3, which 

shows the same trend.  

 
Table 2 

ANALYSIS OF VARIANCE FOR THE RESPONSE VARIABLE LAMBDA FOR THE 

PROPORTIONAL CONTROLLER 

Source 
Sum of 

Squares 
DF Mean Square F-test P-value 

MAIN EFFECTS      

Factor A: ɷ 20378. 0 2 10189. 0 128203. 23 0. 0000 

Factor B: KP 1464. 07 2 732. 035 9210. 85 0. 0000 

Factor C: τ 2357. 45 2 1178. 72 14831. 33 0. 0000 

Factor D: t0/τ 0. 0581481 2 0. 0290741 0. 37 0. 6948 

INTERACTIONS      

AB 5153. 32 4 1288. 33 16210. 46 0. 0000 

AC 2740. 67 4 685. 168 8621. 14 0. 0000 

AD 0. 0514815 4 0. 0128704 0. 16 0. 9570 

BC 10962. 4 4 2740. 6 34483. 63 0. 0000 

BD 0. 269259 4 0. 0673148 0. 85 0. 4995 

CD 0. 429815 4 0. 107454 1. 35 0. 2580 

ABC 37944. 7 8 4743. 08 59679. 98 0. 0000 

ABD 0. 473333 8 0. 0591667 0. 74 0. 6521 

ACD 0. 925278 8 0. 11566 1. 46 0. 1867 

BCD 0. 2575 8 0. 0321875 0. 41 0. 9146 

ABCD 0. 454352 16 0. 028397 0. 36 0. 9882 

RESIDUALS 6. 4375 81 0. 0794753   

TOTAL 

(CORRECTED) 
81009. 9 161    

 

After more than 300 iterations in the search for a suitable regression model, the 

following equation for lambda was obtained 

 1.014 00.67938 0.012396P

t
K 


    (10) 

Achieving an adjusted 
2R  of 0.99. A p-value of 

-1291.34 10  for the model. The p-values 

of the coefficients are shown in Table IV. 

 

Tuning Equation for Proportional-Integral (PI) Controller 

 

Table VII presents the ANOVA of the experiment carried out for the Proportional-

Integral controller. Here it can be seen that the factor PK  does not significantly affect the 
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response variable lambda, while the factors  ,  and 
0t   do. The previous is verified by 

performing a correlation analysis between the factors and the response variable, shown in Table 

V, which shows the same trend.  

 

After more than 300 iterations in the search for a suitable regression model, the 

following equation for lambda was obtained for the PI controller: 

 
1.014 0

00.045297 0.32272sin
t

t 


 
    

 
 (11) 

Achieving an adjusted 
2R  of 0.932. A p-value of 

-902.27x10  for the model. The p-values 

of the coefficients are shown in Table VI.  
 

Table 3 

ANALYSIS OF VARIANCE FOR THE RESPONSE VARIABLE LAMBDA FOR THE 

PROPORTIONAL-INTEGRAL CONTROLLER 

Source 
Sum of 

Squares 
DF Mean Square F-test P-value 

MAIN EFFECTS 

Factor A: ɷ 4349. 25 2 2174. 62 308376. 20 0. 0000 

Factor B: KP 0. 00677531 2 0. 00338765 0. 48 0. 6203 

Factor C: τ 1910. 53 2 955. 265 135462. 97 0. 0000 

Factor D: t0/τ 1902. 83 2 951. 415 134917. 03 0. 0000 

INTERACTIONS 

AB 0. 00289877 4 0. 000724691 0. 10 0. 9812 

AC 4735. 85 4 1183. 96 167893. 93 0. 0000 

AD 4734. 57 4 1183. 64 167848. 50 0. 0000 

BC 0. 0160395 4 0. 00400988 0. 57 0. 6861 

BD 0. 0226617 4 0. 00566543 0. 80 0. 5265 

CD 467. 454 4 116. 863 16572. 03 0. 0000 

ABC 0. 0468642 8 0. 00585802 0. 83 0. 5782 

ABD 0. 023042 8 0. 00288025 0. 41 0. 9127 

ACD 6454. 87 8 806. 858 114417. 94 0. 0000 

BCD 0. 0285235 8 0. 00356543 0. 51 0. 8488 

ABCD 0. 107728 16 0. 00673302 0. 95 0. 5125 

RESIDUALS 0. 5712 81 0. 00705185   

TOTAL 

(CORRECTED) 
24556. 2 161    

 

Detection of Oscillations in the Control Loop 

 

The authors decide to use the detection method of oscillations proposed in (Sanjuan, 

2006) called the Peak Detection Algorithm. The peak detection algorithm assumes that the 

oscillatory closed-loop response can be identified as a second-order pattern. The parameters to 

be determined from the observed oscillatory behavior are the damped natural frequency, D  and 

the damping ratio,  , which can be calculated from a dynamic analysis of the closed-loop 

system step response, as indicated in (Sanjuan, 2006).  

In addition to these parameters, the regularity of the oscillation is also calculated to 

ensure that it is a sustained oscillation and not make a false detection. The regularity of an 

oscillatory signal is translated into a quantity that represents non-random behavior. If the 

variation in the signal is due to random disturbances, the period of oscillation will maintain a 

wider distribution compared to that of a true oscillatory nature. The regularity of the oscillations 

can be defined as 
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p

p

T

T
r f



 
 
 
 

, (12) 

where PT  is the mean value, and 
pT  the standard deviation of the periods piT , in 

adjacent signal intervals. 

 

A regular oscillation will cross the mean of the signal at regular intervals. Therefore, the 

intervals between zero crossings of an oscillatory time trend can be exploited for on-line 

detection of oscillations: the deviation of the intervals between zero crossings is compared to the 

length of the mean interval; a small deviation indicates an oscillation. The threshold selection is 

independent of the signal, that is, it is not necessary to scale the individual signals. However, 

noise can cause "false" crossovers, and the derivative and transients will destroy the notion of 

the mean of the signal. Instead of observing the zero crossings of the trend over time, in [27] is 

suggested using the zero crossings of the ACF. By following the regularity of the period, an 

oscillation can be detected. Regularity is evaluated using a statistic, r , called the regularity 

factor. This statistic is derived from the sequence of ratios between adjacent intervals it  in 

which the deviations cross the threshold. Therefore, the mean period of the oscillation 
pT  can be 

determined from 

  1

1

2 n

p i i

i

T t t
n





  , (13) 

 

and the dimensional regularity factor as [27]: 

 
1

3
p

p

T

T
r


 , (14) 

where 
pT  is the standard deviation of piT . The regularity factor   can be considered as 

an index of oscillation. An oscillation is considered regular with a well-defined period if r is 

greater than unity. 

 
Table 4 

CORRELATION ANALYSIS BETWEEN EXPERIMENTAL FACTORS AND LAMBDA 

RESPONSE VARIABLE FOR THE PROPORTIONAL CONTROLLER 

 
  PK

 
  0 /t 

 0t  
  

  1 
     

PK
 

0. 0219 1 
    

  -0. 0219 0. 2357 1 
   

0 /t 
 

1. 4025      5. 1522       -2. 0818       1 
  

0t  
-0. 0147 0. 1586 0. 6731 0. 6424 1 

 
  -0. 1177 -0. 7434 -0. 7247 -8. 5285       -0. 4878 1 

 

 

Table 5  

 REGRESSION COEFFICIENT ESTIMATION FOR PROPORTIONAL CONTROLLER 

Coefficient Estimated value Sum of Squares T-test P-value 

B1 -0. 67938 0. 021621 -31. 422 4. 52E-57 

B2 1. 014 0. 020791 48. 772 8. 27E-77 

B3 0. 012396 0. 0020903 5. 9306 3. 48E-08 
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Table 6 

CORRELATION ANALYSIS BETWEEN EXPERIMENTAL FACTORS AND LAMBDA 

RESPONSE VARIABLE FOR THE PROPORTIONAL-INTEGRAL CONTROLLER 

 
  PK

 
  0 /t 

 0t  
  

  1 
     

PK
 

0. 01710807 1 
    

  -0. 01513448 0. 00411182 1 
   

0 /t 
 

-0. 03824361 0. 00591568 0. 05721437 1 
  

0t  
0. 02803798 0. 00595118 0. 67580389 0. 67911174 1 

 

  0. 00338221 -0. 00661915 -0. 66460229 -0. 66998538 -0. 96931082 1 

 

 

Table 7 

REGRESSION COEFFICIENT ESTIMATION FOR PROPORTIONAL-INTEGRAL 

CONTROLLER 

Coefficient Estimated value Sum of Squares T-test P-value 

B1 -0. 045297 0. 0049147 -9. 2168 1. 05E-15 

B2 1. 0405 0. 066527 15. 64 5. 03E-31 

B3 -0. 32272 0. 029814 -10. 824 1. 37E-19 

 

General Scheme of the Designed Strategy 

 

This section presents a flow chart of the designed strategy. The strategy is to monitor the 

controlled variable or sensor output signal and the controller's output signal. Using the peak 

detection algorithm and the regularity index, the existence or not of a sustained oscillation in the 

controlled variable is detected. Considering the presence of this sustained oscillation, the 

controller output is forced to the mean value of its signal (since the controlled variable is 

oscillatory, the controller output is also oscillatory), leaving it fixed for a time equivalent to five 

times the period of the oscillation detected. Suppose the oscillatory behavior is maintained in the 

controlled variable. In that case, it is determined that this is the cause of a disturbance (or 

multiple disturbances), and the controller is re-tuned using the equations obtained in this 

investigation. Finally, it is verified that the performance of the loop improved, corroborating that 

the attenuation index (AI) is lower compared to before performing the re-tuning, if indeed the 

AI is lower, the execution of the strategy is terminated; if not, a notification is sent to the control 

engineer to take action on this loop. Fig. 8 and Fig. 9 describe the designed method.  
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FIGURE 5 

BLOCK DIAGRAM OF THE DESIGNED STRATEGY 

 

 
FIGURE 6 

FLOW CHART OF THE DESIGNED STRATEGY 

 

RESULTS 

 

In this section, the equations obtained by implementing them are checked to control a 

general process modeled with a FOPDT and a controller in a closed-loop system under an 

oscillatory disturbance.  
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The case of a steady-state process modeled as a FOPDT is considered, with parameters 

P 0

%TO
K = 0.5 , τ = 3min, t =3min

%CO
 (%TO = transmitter output, %CO = controller output). The 

steady-state value of the sensor output is    18.4674 %C t TO  and the controller output is 

   38.7298 %M t CO . A noise in the sensor signal of 0.5 %TO  is considered. An oscillatory 

disturbance is considered, in this case, a sinusoidal with amplitude 5A   and angular frequency 

  0.5 /rad s  . The programs were developed in Matlab
TM

, and the simulations were built in 

Simulink
TM

. The block diagram of the simulation is shown in Fig. 4. The following table 

compares the results of the control performance using a traditional tuning vs. that obtained 

experimentally. The "experimental" row was obtained from the data obtained from the 

experimental runs carried out during the experiment. In contrast, the "Ex. Experimental" was 

obtained directly from the equation obtained in equations (10) and  (11). 
 

Table 8 

SUMMARY OF RESULTS OBTAINED IN THE IMPLEMENTATION OF THE 

DESIGNED 

Controller Type Tuning Used    % Improvement     

Proportional (P) 

Traditional 1. 5261 - 1. 0000 

Experimental Eq. 1. 6381 -7. 34 % 1. 0725 

Experimental 1. 0443 31. 57 % 0. 6843 

Proportional-Integral 

(PI) 

Traditional 0. 3994 - 1. 0000 

Experimental Eq. 0. 3293 17. 5 % 0. 8245 

Experimental 0. 1567 60. 77 % 0. 3923 

 
CONCLUSIONS & FUTURE WORK 

 

The design concept of this control strategy is that when an oscillatory disturbance 

occurs, instead of designing the controller to reach the setpoint, it is re-tuned to act as the best 

possible filter. Due to this, a performance criterion was defined that sought to minimize the 

effect of an oscillatory disturbance. The equations developed in this research are limited to self-

regulated processes, where proportional (P) or proportional-integral (PI) controllers are 

implemented. The ranges of the process parameters are those specified in this research.  

In thermo-mechanical processes, it is rare for disturbances with a pure oscillatory nature 

to occur, as it may occur in electrical or mechanical processes. However, in a thermo-

mechanical process an oscillation can occur due to factors such as upstream control loops (i.e. 

poor tuning or non-linearities), interactions between loops, or valve stiction. The controller in its 

eagerness to execute the control action, induces poles outside the real axis, that is, roots with 

imaginary components: to stabilize the process quickly, the controller causes poles to appear 

when running in closed-loop, generating these oscillations.  

This technique is not limited to processes with a single control loop because the 

modification is done on each individual controller. This strategy can be extended to more 

controllers without additional mathematical developments since this self-tuning technique when 

operating on each controller individually, seeks to cancel a disturbance that affects each 

controller independent of the control action adjacent controllers. Each controller perceives a 

behavior and applies the technique to know if the source of the disturbance comes from itself or 

a disturbance, remembering that for each controller what happens outside itself is considered as 

process, if the oscillation is not cause by itself (the controller) then it is due to a disturbance, 

which, as mentioned, is most likely due to the control action of another control loop.  
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How is good or bad is the performance of this technique when the cause of the 

oscillation is another controller versus when it is an oscillation in the upstream process is a 

subject for future research. In the case study analyzed in the master's thesis (Borrero Salazar, 

2019), it was found that the tuning developed leads the controller to act as a filter against an 

oscillatory disturbance caused by a poorly tuned controller; however, because the tuning 

equations were conceived under the scenario of an external oscillatory disturbance and not like 

the aforementioned scenario, a better performance against an external oscillatory disturbance is 

to be expected.  

This technique is considered for one input and one output systems (SISO), therefore, it is 

recommended to explore a scenario of two controllers doing this type of compensation 

simultaneously. A conjecture is that both controllers acts as filters, that is to say, the control 

loops will be attenuated since they will work as filters, consequently, they will compete as such. 

The action of this competition between them should lead to the stabilization of the loops. This is 

a hypothesis that remains to be validated in future works. It is recommended to explore tuning 

equations to filter out oscillatory disturbances by changing the three controller parameters 

           for further investigation. In this research, a good result was obtained by changing 

only one parameter for the experimentally developed equations, which helps transmit 

knowledge to the industry as it is a simple technique. The equations obtained experimentally 

were constructed based on the optimal results found in the manual search for each experimental 

condition explored in the execution of the experiment; however, the significant difference in the 

results shown in Table VIII between the row "Experimental Eq.” and "Experimental" is because 

it is very complex to find a regression model that fits 100% of the data and a difference of only 

4% in the value of the approximation results in this difference in the percentage of 

improvement.  

In the primary research carried out (Borrero Salazar, 2019), it was found that the 

attenuation index was reduced from           to           or from           to 

          when comparing between the traditional tuning to the new filtering tuning, 

obtaining improvements of 15.8% and 47.9%, respectively. As this is an index based on the 

standard deviation, only by modifying the controller's gain, significant reductions in the variance 

of the process can be achieved, therefore increasing the profits.  

The tuning equations obtained through this investigation are presented in Table IX, 

where λ  is the recommended value for the controller’s gain given in Eq. (9) (re-written here): 

 

 0 
C

P

K
K t







 

 
Table 9 

SUMMARY OF CONTROLLER TUNING EQUATIONS 

Proportional Controller (P) 

1.014 00.67938 0.012396P

t
K 


    

Proportional-Integral Controller (PI) 

1.014 0
00.045297 0.32272sin

I

t
t

T
 



 
    

 
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